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ML을하기위해해야하는것들!

- 데이터나누기 : Train , Validation, Test

- 데이터전처리하기

- 탐색적자료분석

- 피쳐엔지니어링





Data Acquisition



From Kaggle



General ML Process

Training / Test Set
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train.csv

test.csv

y



일단은한판으로만든다!

데이터모판!



Why 데이터모판!

- Train과 Test 데이터셋의각컬럼에는같은전처리적용

- 데이터에따라 Train에만있고 Test에는존재하지않음

→초기데이터전처리시규칙을만들어야함

- 데이터의분포를좀더넓게볼수있음 (시계열?)



실제서비스에서는모델생성시

사용한전처리를그대로활용하여함





모판에서 y데이터만제거

Train과 Test 데이터의위치는기억



Data Preprocessing



데이터는깨끗한가?



더럽다



어떻게할까?



깨끗이하고, 좋게하고



Data Cleansing



Feature Engineering



Exploratory 
Data Analysis
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데이터처리의전략

-모판은흔들지않는다

-하나의셀은다시실행해도그결과가보장되야한다.

-전처리가완료후함수화한다 (merge함수필수)

-컬럼이름은 list로관리하기! 직접입력X

-데이터는타입별로분리해서관리하기!

-데이터노트작성하기!!!



데이터노트

-데이터에대한처리내용및방향을정리한노트

-기본적인전처리방향과방법들을정리함

-데이터에대한아이디어를정리와지속적인업데이트



기본적인데이터현황파악코드



Data Cleansing issues

-데이터가빠진경우 (결측치의처리)

-라벨링된데이터(category)데이터의처리

-데이터의 scale의차이가매우크게날경우



Missing Value



Missing Value Strategy

-데이터가없으면 sample을drop

-데이터가없는최소개수를정해서 sample을drop

-데이터가거의없는 feature는 feature 자체를drop

-최빈값, 평균값으로비어있는데이터를채우기



Data



Data drop

NaN이 데이터를 column별로 합계

drop nan → 데이터들이 사라짐



Data drop

모든 데이터가 비어 있으면 drop



Data drop
NAN을 생성 column 

column 기준으로 삭제

데이터가 최소 4개 이상
없을 때 drop



Data drop

5개 이상 데이터가 있지 않으면 Drop



데이터값채우기

- 평균값, 중위값, 최빈값을활용 https://goo.gl/i8iuL9



데이터가채우기

- 평균값 – 해당 column의값의평균을내서채우기

- 중위값 – 값을일렬로나열했을때중간에위치한값

1, 3, 3, 6, 7, 8, 9

- 최빈값 – 가장많이나오는값

1, 2, 2, 3, 3, 4, 4, 3



Data Fill
데이터가 없는 곳은 0으로 집어넣어라

preTestScore의 평균값을 집어넣어라



Data Fill

성별로 나눠서 평균 값을 집어 넣어라

Age와 sex가 모두 notnull인 경우에만 표시해라



Missing Value Handling



Category Data



이산형데이터를어떻게처리할까?

{Green, Blue, Yellow}



이산형데이터를어떻게처리할까?

{Green, Blue, Yellow} 데이터 집합

{Green}

{Green}

{blue}

실제 데이터 set의 크기만큼
Binary Feature를 생성

One-Hot Encoding

➔ [1, 0, 0]

➔ [1, 0, 0]

➔ [0, 1, 0]



Data type

Data의 type = int64

Data의 type = object



One Hot Encoding



One Hot Encoding

Ordinary data → One Hot Encoding



데이터의구간을나눠보자

Data Binning!



Data binning

데이터의 구간을 나눌 수 있음



Data binning구간 기준

구간명

Cut 후 categories에 할당



Data binning

기존 dataframe에 할당



Label encoding by sklearn

- Scikit-learn의 preprocessing 패키지도 label, one-hot 지원



Label encoding by sklearn

- Scikit-learn의 preprocessing 패키지도 label, one-hot 지원

Encoder 생성

Data에 맞게 encoding fitting

실제 데이터 → labelling data



Label encoding by sklearn

- Label encoder의 fit과 transform의 과정이 나눠진 이유는

- 새로운 데이터 입력시, 기존 labelling 규칙을 그대로 적용할
필요가 있음

- Fit 은 규칙을 생성하는 과정

- Transform은 규칙을 적용하는 과정

- Fit을 통해 규칙이 생성된 labelencoder는 따로 저장하여

- 새로운 데이터를 입력할 경우 사용할 수 있음

- Encoder들을 실제 시스템에 사용할 경우 pickle화 필요



Label encoding by sklearn

기존 label encoder를 따로 저장

저장된 le로 새로운 데이터에 적용



One-hot encoding by sklearn

- Numeric labelling이 완료된 데이터에 one-hot 적용

- 데이터는 1-dim 으로 변환하여 넣어 줄 것을 권장

1-dim 변환하여 fit

1-dim 변환후 transform → ndarray



What we did

- Category data encoding – one-hot encoding

- Missing value handling

- Data drop

- Log transformation

- Data binning
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What we will do

- Encoding Families

- Feature Interactions

- Scaling

- Feature Selection

- Data binning



Feature 
Engineering







Feature engineering

Generation Selection

- Binarization, Quantization

- Scaling (normalization)

- Interaction features 

- Log transformation

- Dimension reduction

- Clustering

- Univariate statics

- Model-based selection

- Iterative feature selection

- Feature removal



Log transformations

- 데이터의분포가극단적으로모였을때(poisson)

- 선형모델은데이터가정규분포때적합

- Poisson → Normal distribution

- 로그인카운트, 제품판매량, 검색단어, 친구수

- np.log or np.exp 등의함수를사용

Long-tail graph



Log transformations



Log transformations





Log transformations



Mean encoding

- Category 데이터는항상 One-hot Encoding?
→ X, 다양한인코딩기법이있음

- 대표적인방법으로 Y값에대한분포를활용한
Mean Encoding이사용됨



Mean encoding

- Label 인코딩은그자체로정보가존재하지않음



Mean encoding

- Mean 인코딩: 분포의값을취할수있음



Mean encoding



Mean encoding



Mean encoding

- 조금더빨리 , 조금더나은성능이나오기도함



Mean encoding

- Regression Task는단순평균값으로입력

https://www.kaggle.com/vprokopev/mean-likelihood-encodings-a-comprehensive-study

https://www.kaggle.com/vprokopev/mean-likelihood-encodings-a-comprehensive-study


Mean encoding

- Overfitting을 제거하기위해 smoothing을사용함

https://www.kaggle.com/vprokopev/mean-likelihood-encodings-a-comprehensive-study

https://www.kaggle.com/vprokopev/mean-likelihood-encodings-a-comprehensive-study


Mean encoding

- 이외에도많은 Encoding 기법들이존재함

https://github.com/scikit-learn-contrib/categorical-
encoding?fbclid=IwAR3b4X2XUuMJWuH0LxTs9Hf4rAzHe
S6W-q3DegG1kuZwhKhZejTmznG_nvM

https://github.com/scikit-learn-contrib/categorical-encoding?fbclid=IwAR3b4X2XUuMJWuH0LxTs9Hf4rAzHeS6W-q3DegG1kuZwhKhZejTmznG_nvM


Interaction features

- 기존 feature들의조합으로새로운 feature를생성

- Data에대한사전지식과이해가필요

- Polynomial feature를사용한자동화가능→높은비용
sklearn.preprocessing.PolynomialFeatures

- 실험적으로접근할요소들은있음→자동화코드중요

- weight + time-period, sensor1 + sensor2

http://scikit-learn.org/stable/modules/classes.html#module-sklearn.preprocessing


Interaction features



Interaction features

- Category Combination



Interaction features



Interaction features



Interaction features



Interaction features



Etc

- Feature 끼리더하기, 곱하기, 나누기등등

- 왜잘되는지모르는데잘되는경우가있음

- 도메인지식과 EDA로좋은 Feature들을생성해야함





Feature engineering

Generation Selection

- Binarization, Quantization

- Scaling (normalization)

- Interaction features 

- Log transformation

- Dimension reduction

- Clustering

- Univariate feature selection

- Model-based selection

- Iterative feature selection

- Feature removal



Feature selection

- 모든 feature 들이반드시 model 학습에필요치않음

- 어떤 feature들은성능을오히려나쁘게함

- 너무많은 feature → overfitting의 원인

- 모델에따라서필요한 feature를선택함

- 필요없는 feature 제거→학습속도와성능향상

- 다양한기법과코드에대해공부



Univariate feature selection

- 통계모델을기반으로한최적의 feature를선택

- Chi square, F-test, ANOVA 등의통계모델을사용

- Y값과하나의 feature간의통계적유의미를분석

- 주로선형모델에서유용하게사용할수있음

- 빠르게사용할수있는 feature selection 기법



SelectKBest



SelectKBest

SelectKBest SelectPercentile

•For regression: f_regression, mutual_info_regression
•For classification: chi2, f_classif, mutual_info_classif

http://scikit-
learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html

http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html#sklearn.feature_selection.SelectKBest
http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectPercentile.html#sklearn.feature_selection.SelectPercentile
http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.f_regression.html#sklearn.feature_selection.f_regression
http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_regression.html#sklearn.feature_selection.mutual_info_regression
http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.chi2.html#sklearn.feature_selection.chi2
http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.f_classif.html#sklearn.feature_selection.f_classif
http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_classif.html#sklearn.feature_selection.mutual_info_classif


SelectKBest



Model based feature selection

- 몇몇모델들은학습과정에서적절한 feature를찾음

- L1 penalty, Tree-based model

- Feature importance를 기반으로한 feature 선택이가능

- 다른모델의 feature 선택의전처리단계로활용가능

- 한번에모든 feature를고려함→시간증가, 성능향상

- Tree-based ensemble 계열은이런특징들이이미있음



SelectFromModel



Iterative Feature Selection

- 반복적으로 feature의수를조절→최적 feature 선택

- 1개→ n개 , 또는 n개→ 1개 (Recursive Feature Elimination, RFE)

- 매우높은계산비용, 성능보장

- 회귀모델의 stepwise selection 기법이존재(scikit-learn X)

- Tree 계열모델을사용 feature importance를 사용

- 데이터의 context를모를때, 사용하기용이함



Recursive Feature Elimination



feature 선택의주의사항들

- prediction time에도 쓸수있는 feature 인가?

- 실시간예측이필요할때, 생성이너무고비용이아닌가?

- scale은일정한가? 또는비율적으로표현가능한가?

- 새롭게등장하는 category data는? 가장비슷한것?

- 너무극단적인분포→ threshold 기반으로 binarization



feature 선택의주의사항들

- prediction time에도 쓸수있는 feature 인가?

- 실시간예측이필요할때, 생성이너무고비용이아닌가?
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- 새롭게등장하는 category data는? 가장비슷한것?

- 너무극단적인분포→ threshold 기반으로 binarization



이런 Feature들은삭제하자!

- Correlation 이너무높은 Feature는삭제

- 전처리가완료된 str feature들

- ID와같은성향을가진 Feature 들



Feature scaling



두변수중하나의값의크기가너무크다!

몸무게와 키가 변수일때, 키가 영향을 많이 줌



Feature scaling

Feature간의 최대-최소값의 차이를 맞춘다!

min

min max

max



Feature scaling 전략

- Min-Max Normalization

기존 변수에 범위를 새로운 최대-최소로 변경

일반적으로 0과 1 사이 값으로 변경함

최소 12,000 / 최대 98,000 → 기존 값 73,600



Feature scaling 전략

- Standardization (Z-score Normalization)

기존 변수에 범위를 정규 분포로 변환

실제 Mix-Max의 값을 모를 때 활용가능

평균 54,000 / 표준편자 16,000 → 73,600



실제 사용할 때는 반드시

정규화 Parameter(최대/최소, 평균/표준편차) 등을

기억하여 새로운 값에 적용해야함

주의사항



Min-Max Normalization



Z-Score Normalization



Feature Scaling Function



Feature scaling with sklearn

- Label encoder와 마찬가지로, sklearn도 feature scale 지원

- MinMaxScaler와 StandardScaler 사용



Feature scaling with sklearn

- Preprocessing은 모두 fit → transform의 과정을 거침

- 이유는 label encoder와 동일

- 단, scaler는 한번에 여러 column을 처리 가능









Model & Trainning



데이터의정리가끝나면학습하는방법

- 적합한모델을선정한다 (실험)

- 모델에적합한하이퍼파라메터를선정한다 (실험)

- 다양한전처리경우의수를입력한다 (실험)

- 학습을실행한다.

- 성능을평가한다.



데이터 numpy로변환



모델을선정하여학습시키기



Data Split



모의고사늘만점받던철수는
수능에서80점받았다.

왜그랬을까?



철수는수능공부안하고
모의고사공부만함







Overfitting 
ML에서학습데이터에만맞춰서모델을생성



Overfitting

학습데이터과다최적화→새로운데이터의예측↓

https://goo.gl/aP8iFa

Underfitting Just right Overfitting



ML모델은현실의데이터를잘예측해야함!



확보된데이터를잘나눠서평가하자!

그데이터가세상을제대로반영하도록!



Data Set

Training Set

Test Set

Performance
Metrics

Model
Generation



Holdout Method (Sampling)

- 데이터를 Training과 Test와 나눠서 모델을 생성하고 테스트하는 기법

- 가장 일반적인 모델 생성을 위한 데이터 램덤 샘플링 기법

- Training과 Test를 나누는 비율은 데이터의 크기에 따라 다름

import numpy as np
from sklearn.model_selection import train_test_split

X, y = np.arange(10).reshape((5, 2)), range(5)

X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.33, random_state=42)



성능 측정을 위해

데이터를 나누는 방법



Training Validation Test

Model

Building

Model

Evaluation

Model

Check

Training - Validation - Test



Validation Set

- Test Set과 달리 Model 생성시 Model에 성능을 평가하기 위해 사용

- Hyper Parameter Turning 시 성능 평가를 통해 Overfitting 방지

- Training 중간에 Model의 성능을 점검

- Test Set은 Model이 생성시 절대 Training Set에 포함되지 않아야 함



Training 
Set

Validation
Set

Test
Set

6 2 2



From: Python Machine Learning, https://goo.gl/JR9vxM



K-fold cross validation

- 학습 데이터를 K번 나눠서 Test와 Train을 실시→ Test의 평균값을 사용

Training Set Validation Set

Validation Set

Validation Set

Validation Set

- 모델의 Parameter 튜닝, 간단한 모델의 최종 성능 측정 등 사용



K-fold Cross Validation



Leave One Out (LOO)

- Simple cross validation → k = data size

- 한번에 한 개의 데이터만 Test set으로 사용함→총 k번 iteration

https://www.researchgate.net/profile/Nikolaos_Chlis/publication/266617511/figure/fig
11/AS:295705362092036@1447513060277/Leave-One-Out-Cross-Validation.png



Etc…

- LeavePOut –한번에 P개를 뽑음 (Not LOO for one data)

- ShuffleSplit –독립적인(중복되는) 데이터 Sampling

- StratifiedKFold – Y 값 비율에 따라 뽑음

- RepatedKFold –중복이 포함된 K-Fold 생성

- GroupKFold –그룹별로 데이터를 Sampling



Cross validation

Train-Validation-Test



Imbalanced dataset

- 유방암사진 dataset

- 학사경고자예측 dataset

- 물건을구매한유저의 dataset 

- 카드사기에관련된 dataset

대부분의 dataset은 imbalanced dataset



How to handle imbalanced dataset

- 적절한 performance metric을 선정 (accuracy X)

- precision, recall, AUC이 적절

- 적절한 training dataset의 resampling

- oversampling, under sampling, data augmentation

- Ensemble



Dataset resampling

original
dataset FALSE TRUE

training
dataset

TRUEFALSE

test
dataset

FALSE TRUE



Dataset resampling

- Imbalanced class가충분히많다면

under sampling → FALSE 데이터를줄임

- Imbalanced class가부족하다면

over sampling → TRUE 데이터를늘림



imbalanced-learn

- scikit-learn의 imbalanced dataset 확장모듈

- under sampling, over sampling, SMOTE 등제공

https://github.com/scikit-learn-contrib/imbalanced-learn

pip install -U imbalanced-learn

conda install -c conda-forge imbalanced-learn



Stratified sampling

original
dataset FALSE TRUE

training
dataset

TRUEFALSE

test
dataset

FALSE TRUE



Imbalanced dataset handling process

- 전체 dataset에서 test와 dev set을나눔 (stratified)

- dev set으로 under sampling 또는 oversampling

- 모델의생성

- Test set으로모델의검증



Performance 

Metrics







Regression metrics

- Mean Absolute Error

잔차의절대값의 Sum



Regression metrics

- Root Mean Squared Error (RMSE)

잔차제곱의 sum의루트



Regression metrics

- R squared

0과 1사이숫자로크면클수록높은적합도를지님



분류 문제의

정확도 성능



실제 Class 대비

얼마나 잘 맞혔는가?



Confusion Matrix (혼합 행렬)

1 0

True
Positive

Prediction

Actual 
Class

1

0
False

Positive

False
Negative

True
Negative

- 실제 라벨과 예측 라벨의 일치 개수를 Matrix 형태로 표현하는 기법



Confusion Matrix (혼합 행렬)

True Positive (TP)

- 실제 결과 참(1)에 대한 예측이 맞음

True –예측이맞음

Positive –참(1) 인경우

1 0

True
Positive

Prediction

Actual 
Class

1

0
False

Positive

False
Negative

True
Negative



Confusion Matrix (혼합 행렬)

True Negative (TN)

- 실제 결과 거짓(0)에 대한 예측이 맞음

True –예측이맞음

Negative –거짓(0) 인경우

1 0

True
Positive

Prediction

Actual 
Class

1

0
False

Positive

False
Negative

True
Negative



Confusion Matrix (혼합 행렬)

False Positive (FP)

- 실제 결과 참(1)에 대한 예측이 틀림

False –예측이틀림

Positive –참(1) 인경우

1 0

True
Positive
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Actual 
Class

1

0
False

Positive

False
Negative

True
Negative



Confusion Matrix (혼합 행렬)

False Negative (FN)

- 실제 결과 거짓(0)에 대한 예측이 틀림

False –예측이틀림

Negative –거짓(0) 인경우

1 0

True
Positive

Prediction

Actual 
Class

1

0
False

Positive

False
Negative

True
Negative



Confusion Matrix (혼합 행렬)

True Positive (TP)

True Negative (TN)

False Positive (FP)

False Negative (FN)



0 1

Prediction

True
Class

0

1



Metrics for classification performance

- Accuracy (정확도)

- Error Rate (오차율)

- Precision (정밀도)

- Specificity (특이도)

- Sensitivity (민감도)



실제 Class 대비

얼마나 잘 맞혔는가?



정확도 (Accuracy, ACC)

- 전체 데이터 대비 정확하게 예측한 개수의 비율

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

𝐴𝐶𝐶 = 1 − 𝐸𝑅𝑅

1 0

True
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Prediction

Actual 
Class

1

0
False

Positive

False
Negative

True
Negative



오차율 (Error Rate, ERR)

- 전체 데이터 대비 부정확하게 예측한 개수의 비율

𝐸𝑅𝑅 =
𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

𝐸𝑅𝑅 = 1 − 𝐴𝐶𝐶

1 0

True
Positive

Prediction

Actual 
Class

1

0
False

Positive

False
Negative

True
Negative





불균일한

Dataset의 처리



불균일한 Dataset의 종류

- 14세 이하의 10만명당 암 발병 인원은 14.8, 약 0.015%

- 대학의 학사경고자 평균 비율 3% 

- 하버드 입학 지원자의 합격률은 2%

- 이메일 수신자 중 2% 만이 물건을 구매

만약 Accuracy로 구한다면?



https://svds.com/learning-imbalanced-classes/



Metrics for 

Imbalanced Dataset



정밀도 (Precision, Positive Predictive Value)

- 긍정이라고 예측한 비율 중 진짜 긍정인 비율

1 0

True
Positive

Prediction

Actual 
Class

1

0
False

Positive

False
Negative

True
Negative

𝑃𝑅𝐸𝐶𝐼𝑆𝑂𝑁(𝑃𝑃𝑉) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

- 긍정이라고 얼마나 잘예측했는가? 긍정 예측 정밀도?

https://en.wikipedia.org/wiki/Sensitivity_and_specificity





labels : list, optional
pos_label : str or int, 1 by default
average : string, [None, ‘binary’ (default), ‘micro’, ‘macro’, 
‘samples’, ‘weighted’]
sample_weight : array-like of shape = [n_samples], 
optional







전체 평균

(Label별 값 합)의 평균



민감도 (Sensitivity, Recall, True Positive Rate)

1 0

Prediction

Actual 
Class

1

0

𝑅𝐸𝐶𝐴𝐿𝐿 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=
𝑇𝑃

𝑃

https://en.wikipedia.org/wiki/Sensitivity_and_specificity

True
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False
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False
Negative

True
Negative

- 실제 긍정 데이터중 긍정이라고 예측한 비율, 반환율, 재현율

- 얼마나 잘 긍정(예 - 암)이라고 예측하였는가?
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특이성 (Specificity, True Negative Rate)

- 부정을 얼마나 잘 부정이라고 인식해는가?

1 0

Prediction

Actual 
Class

1

0

𝑆𝑃𝐶 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
=
𝑇𝑁

𝑁

- 전제 부정중 부정을 정확히 찾아낸 비율

https://en.wikipedia.org/wiki/Sensitivity_and_specificity
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F1 Score (F-measure, F-score)

- Precision과 Recall의 통합한 측정지표
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0

𝐹1 = 2
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

- Precision과 Recall의 조화평균

https://en.wikipedia.org/wiki/Sensitivity_and_specificity
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𝐹1 = 2
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙





Example
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Precision - Recall Curve

- 예측 확률 Threshold를 변화시켜 Precision/Recall 측정

- 시각화 할 때 유용하게 사용 가능





Precision - Classification Report

- Classification 문제에서 한번에 Precision, Recall, F1 결과 출력







Human knowledge belongs to the world.


