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Machine Learning SYSTEM

Machine
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Figure 1: Only a small fraction of real-world ML systems is composed of the ML code, as shown
by the small black box in the middle. The required surrounding infrastructure is vast and complex.

Hidden Technical Debt in Machine Learning Systems (D Scully et al @Google)




Data Acquisition



From Kaggle



General ML Process
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DATA_DIR =

data_files = reversed(
'os.path.join(DATA_DIR, filename) \
for filename in os.listdir(DATA_DIR) |)

df_list = ||

for filename in data_files:
df_list.append(pd.read_csv(filename))

df = pd.concat(df_list, sort=False)

df = df.reset_index(drop=Irue)
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Traind} Test |0|E{9] | X|= 7|

number_of_train_dataset = df.Survived.notnull().sum()

number_of_test_dataset = df.Survived.isnull().sum()

F i b

y_true = df.pop( )| :number_of_train_dataset




Data Preprocessing
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Data Cleansing




Feature Engineering



Exploratory
Data Analysis



Data
/ Cleansing \

Feature Exploratory

Engineering Data Analysis
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.isnull().sum( )

.describe( )
head(2).T




Data Cleansing issues
- H|O]|E47} bt A2 (BEX[2] A 2)
- 22 El §|O0|E{(category) ClIO|E{2] X2

- H|O|E{2] scale2| A[O]7} O} 37| T BF



Missing Value



Missing Value Strategy

- B0 E{ 7} 812 ™ sample= drop

- |0 E{7} Bl= &2 7 <~& 5 sample& drop
- H|0|E{ 7} 42| 1= feature= feature X}x|& drop
- i, a2 = H|0{ U= HIO|E & <7



Data

A Faxmple from — Rtlps Archrisalbon, comsovthon/oandas missing data htmf
raw_data = {'first_pame': ['Jason', np.nan, 'Tina', 'Jake', "dmy'],

‘last_name': ['Miller', np.nan., "Ali', "Milner', 'Coocze'],
‘age': [42, np.nan, 36, 24, 73],
‘sex't ['m', np.nan, 'f', 'm', "f']

‘preTestscore’ s [4, np.nan, np.nan, 2, 3],

‘postTestScore': [25, np.nan, np.nan, 62, 701}
df = pd.DataFramelraw_data, colunns = ['first_name', 'last_name', 'age', 'sex', 'prelestScore’, 'postTestScore'])
o f

first_name last name age sex prelesiScore postTestScore

0 Jason Miller 42.0 m 40 26.0
1 MNaM MaM MNaN NaN MaM MaN I
2 Tina Ali  36.0 f M aM M aM
3 Jake Milner 24.0 m 20 62.0
4 Amy Gooze 730 f 3.0 70.0



Data drop

df cisnul 1), sum()

first_name

|l ast _name

age

SEX
preflestscore
post Test score
dtype: intbd

df _no_missing
df _no_missing

1
1
1
1
Z
Z

= df . dropnal )

drop nan = H|O|E{S0| Al2}H

NaNO| H|O|E{E€ columnE 2 T4

first_name last_name age sex prelesiScore postTestScore
0 Jason Miller 42.0 m 4.0 25.0
3 Jake Milner 24.0 m 2.0 62.0
4 Amy Gooze /3.0 f 3.0 70.0



df _cleaned = df . dropnalhow="all "]

Data drop

df_cleaned 2= GIoJE{7} H|O] A2 drop

firsi_name Ilast name age sex prelesiScore postTestScore
0 Jason Miller 42.0 m 4.0 25.0
2 Tina Ali 36.0 f NEW NEW
3 Jake Milner 24.0 m 2.0 G2.0
4 Amy Gooze 730 f 3.0 0.0



df['location'] = np.nan

Data drop

NANZ= M/d column

df . dropnalaxis=1, thresh=3)

H|O|E{7} Z| & 471 O &

gl W drop

df

first_name | last_name |age |sex |preTestScore | postTestScore |location first_name |last_name |age |sex |preTestScore postTestScore
0|Jason Miller 120(m |40 25.0 NaN 0 |Jason Miller 420 |m 4.0 25.0
1|NaN NaN NaN | NaN | NaN NaN NaN 1| NaN NaN NaN | NaN | 3.0 NaN
2| Tina Al 36.0 |f NaN NaN NaN 2| Tina All 36.0|1 3.0 70.0
3| Jake Milner 240|m |20 62.0 MNaM 3 | Jake Milner 240 |m |20 62.0
4 [ Amy Cooze T30 |1 3.0 T0.0 MNaN 41 Amy Cooze T3.0|f 3.0 0.0
df . dropnalaxis=1. how="all") column 7|'|,'_:'2E &!-x."

first_name |last_name |age |sex |preTestScore | postTestScore
0| Jason Miller 4201m 4.0 250
1| MNaN MaM MaM | NaM | 3.0 MaM
2| Tina Ali 36.0 |1 3.0 700
3 | Jake Milner 240 | m 20 62.0
4 [ Amy Cooze T3.0|f 3.0 T0.0




df . dropnal thresh=5)

Data drop

571 o] & HIO[E{7t K| 222 Drop

first name |last name |age |sex |preTestScore | postTestScore | location
0| Jason Miller 420(m 4.0 29.0 MNaM
v | Jake Milner 240(m 2.0 62.0 MNaM
4 | Amy Cooze 73071 3.0 0.0 MaM
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H|O[E{ 7t X} 271

0 70.0
dtype: floatéd

ix — o' column?| #2] Bxr= LHA X7
X — E:Eglfﬁi df[ "preTestScore” ] .mean |
n 3.0
- = €22 HEMS I S0 Xt &
L (n—1 df tTestsS "1 .medi
6, 7, 8, 9 ( - ) [ "postTestScore”].median
66.0
- 78 0| L= &
3, 3, 4, 4, 3 df["pnstTestScnre"].mnde{}|



Data Fill

df.fillnal0}  C|O|E{Z} Qi =2 022 £ o202}

first name |last name | age |sex |preTestScore | postTestScore |location
0|Jason Miller 420|m |40 25.0 0.0
110 0 0.0 |0 0.0 0.0 0.0
2| Tina Al 36.0|f 0.0 0.0 0.0
% | Jake Milner 240(m |20 62.0 0.0
4 | Amy Cooze 73.0|f 3.0 70.0 0.0

df ["preTestscore"] . fillnaldf ["preTestScore”] .nean(), inplace=True)

daf preTestScorel| xS T 020z}
first_name |last name |age |sex |preTestScore | postTestScore |location

0| Jason Miller 42.0|m 4.0 25.0 MNaM

1| NaN MNaM MNaMN | NaN | 3.0 NaN NaMN

2| Tina Al 36.0 |f 3.0 NaN NaM

% | Jake Milner 240 (m 2.0 62.0 NaMN

41 Amy Cooze 73.0(f 3.0 70.0 MNaN




df ["post TestScore”] . fil Ina(df. groupby( " sex" ) ["post Test Score"] . transform( "mean” ],

Data Fill

i MEE URM "2 e o Yoizt
first_name |last_name |age |sex |preTestScore | postTestScore |location
0| Jason IMiller 42.0|m 4.0 25.0 MNaN
1| NaN NaM MNaMN |NaN (3.0 MNaM MNaM
2| Tina Al 36.0 (T 3.0 70.0 NaMN
9 | Jake Milner 24.0 (m 2.0 62.0 NaM
4 | Amy Cooze 73.0|f 3.0 70.0 NaM

df [df ["age'] . notnul 1) & of ["sex' ] notnul 1]

Age?l sexZt 25 notnull®! Z 202t EA|sl2}

first_name | last_name [age |seX |preTestScore | postTestScore | location
0 | Jason Miller 42.0|m |4.0 25.0 MNaMN
2 | Tina Al 36.0|f1 3.0 70.0 MNaMN
3 | Jake Milner 240|m |20 62.0 NaM
4| Amy Cooze 73.0|f 3.0 70.0 NaM

inplace=True)



Missing Value Handling

df .isnull().sum() pd.options.display.float_format = '{:.2f}%'.format
df .isnull().sum() / len(df) * 100

Ezfzzggerld 8 Passenger | d 0.00%
Pclass 0.00%

Name 0 Name 0.00%

SeX 0 Sex 0.00%

Age 263 Age 20.09%

SibSp 0 SibSp 0.00%

Parch 0 Parch 0.00%

Ticket 0 Ticket 0.00%

Fare 1 Fare 0.08%

Cabin 1014 cabin 77.46%

Embar ked > Embarked 0.15%

dtype: int64 dtype: float64



Category Data
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{Green, Blue, Yellow}



O|4td HIO|E & B A X272
One-Hot Encoding
{Green, Blue, Yellow} CjojE| &g

{Green} = [1, 0, 0]
{Green} = [1, 0, O]
{blue} = [0, 1, 0]

AH HO|E sete] 7|7t
Binary FeatureE 4/d



Data type

import pandas as pd
import numpy as np

edges = pd.DataFrame({ source': [0, 1, 2],
'‘target': [2, 2, 3],
'‘weight': [3, 4, 5],
‘color': ['red', 'blue', 'blue']})

edges]"source" Data2| type = int64

0 0
1 1
2 2
Mame: source, diype:. integd

edges["color" ]

(0 red
1 blue o — i
> brue Data?| type = object

Mame: color, dtype. object



One Hot Encoding

pd. get_dumnies edges )|

source |target | weight | color_blue | color_red

00 2 3 0 1
101 2 4 1 0
2|2 3 5 1 0

pd.get_dummies{edges|"color"])

blue red
0|0 1
11 0
21 0

pd. get_dummies{edges[["color" ]])

color_blue | color_red

00 1

101 0

2|1 0




One Hot Encoding

weight_dict = {3:"M", 4:"L", 5:"HL"}
edges["weight_sign"] = ledges["weicht" ] map{weight_dict)

eages Ordinary data - One Hot Encoding
color |source |target | weight | weight_sign

Olred |0 2 3 Y

1 |blue |1 2 4 L

2 |blue |2 3 5 XL

edges = pd.get_dummies(edges)
edges . as_matrixi)

i
0],
111, dtvpe=int&4)
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Data Binning!

« Data:0.4, 12, 16,16, 18, 24, 26, 28
* Equal width

— Bin1: 0_4 -, 10)
—gin2:12_ 16,16, 18 10.20)
— Bin3: 24 26 28 20,+)

* Equal frequency
—gin1: 0.4, 12 -, 14)
— Bin2: 16_ 16,18 14, 21)
— Bin3: 24, 26 28 21,+)




Data

binning

# Example from — hitps!//chr isalbon. com/pyithon/pandas_binning data. himl

raw_data = {'regiment 0 ['Nighthawks', 'Nighthawks', '‘Nighthawks', 'Nighthawks', 'Dragoons', 'Oragoons', 'Dragoons', 'Dragoons', 'Scouts',

‘company': ['1st', “ist', ‘'znd', 'end', ‘1st', “ist', 'end', 'end', ‘ist', ist', ‘end', 'end'],
‘rame s [Miller', "Jacobson', ALY, 'Milner', 'Cooze', 'Jacon', 'Ryaner', 'Sone', 'Sloan', 'Piger', 'Riani', 'Ali'],

‘oreTestScore': [4, 24, 31, 2, 3, 4, 24, 31, 2, 3, 2, 3],

‘mostTestScore' : [20, 94, OF, B2, 70, 20, 94, 57, B2, 70, B2, 701}
= pd.DataFrame (raw_data, columns = ['regiment', 'company', 'name’, 'prefestScore’, 'postTestScore'])

df
df
regiment |company |nhame preTestScoref postlestScore

0 | Nighthawks | 1st Miller 4
1 |Nighthawks | 1st Jacaobson | 24
2 |Nighthawks | 2nd Ali 31
3 | Nighthawks | 2nd Milner 2
4 |Dragoons |1st Cooze 3
5 |Dragoons |1st Jacon 4
6 |Dragoons |2nd Ryaner |24
7 |Dragoons |2nd Sone 31
8 |Scouts 1st Sloan 2
9 |Scouts 1st Piger 3
10 | Scouts 2nd Riani 2
11 | Scouts 2nd Ali 3

Ho[E{e] FZtS LIE

'q

J



-

7 Data binning

bing = [0, 25, B0, 7o, 100] # Define bins as O to 25, 25 to 50, 60 to 75, 75 to 10
group_names = ['Low', 'Okay', 'Good', 'Great'] '51215§
categories = pd.cut (df[ 'postTestScore'], bins, labels=group names)

categories Cut ¥ categoriesOfl &

Lo
Great
Good
Good
GO0
Lo
Great
Good
Elalsle
Good
10 Good
11 GO0
Mame: postTestScore, divpe: category
Categories (4, object): [Low < Okay < Good < Great ]

5 20 ] D O = DO D — T



df [ 'categories' ] = pd.cut (df [ 'postTestScore' ], bins,

Data binning

pd.value_counts{df[ 'categories'])

labe | s=group_names )

7|= dataframe0]| %t

Good 5
Great 2
Low 2
Okeay 0
Name: categories, dtype: int6d
df

regiment |company |name preTestScore | postTestScore | categories
0 |Nighthawks | 1st Miller 4 25 Low
1 |Nighthawks | 1st Jacobson | 24 94 Great
2 | Nighthawks | 2nd Ali 31 57 Good
3 |Nighthawks | 2nd Milner 2 62 Good
4 |Dragoons |1st Cooze 3 70 Good
5 |Dragoons |1st Jacon 4 25 Low
6 |Dragoons |2nd Ryaner |24 94 Great
7 |Dragoons |2nd Sone 31 57 Good
8 |Scouts 1st Sloan 2 62 Good
9 |Scouts 1st Piger 3 70 Good
10 | Scouts 2nd Riani 2 62 Good
11 | Scouts 2nd Ali 3 70 Good




Label encoding by sklearn
- Scikit-learnQ| preprocessing 7| X| = label, one-hot X| &

raw_example = df.as matrix()
raw_example[:3]

array([[ 'Nighthawks', 'lst', 'Miller', 4, 25, 'Low'],
[ 'Nighthawks', 'lst', 'Jacobson', 24, 94, 'Great'],
[ 'Nighthawks', '2nd’', 'Ali', 31, 57, 'Good']], dtype=object)

data = raw example.copy()



Label encoding by sklearn

- Scikit-learn2| preprocessing Il 7| X| = label, one-hot X| &

from sklearn import preprocessing AH A
le = prePrmcessing.LahelEncnder{)/'EnCOder = (=

le.fit(raw_example[:,0])— — Data0f| 7| encoding fitting
le.transform(raw _example[: ,0].)\%}" 4|0|E| > Iabelling data

array([1, 1, 1, 1, 0, O, O, O, 2, 2, 2, 2])




Label encoding by sklearn

- Label encoder?| fitd} transform®| 1}’30| L}l Ol /F=

- MZ22 Hlo|E| Y=HA|, 7|= labelling 32 ACHZ M8
Za7t g

- Fit 2 FAE WAsE IHH

- Transform2 &S HE8ol= 1}

- Fit2 8ol #%10] M E labelencoder= 2 X %6104

- ME2 HIO|EZ =Y ZF A8 = U=

- Encoder== AHN| A|AHIN ALEE BF picklezl E2



label column = [0,1,2,5]

label enconder list = []

for column index in label column:
le = preprocessing.LabelEncoder()
le.fit(raw example[:,column index])

data[:,column index] = le.transform(raw example[:,column index])

label_encﬂnder_list.append{lej\\\

del le 7| = label encoders L2 X%
data[:3]

array([[1, O, 4, 4, 25, 2],
[1, 0, 2, 24, 94, 1],
(1, 1, 0, 31, 57, 0]], dtype=object)

label enconder list[0].transform(raw example[:10,0])

array([1, 1, 1, 1, 0, 0, 0, 0, 2, 2V MZ =l [e2 MEZ2 HO|E{0] M




One-hot encoding by sklearn

- Numeric labelling0| 2t2El H|0|E{0f| one-hot &
- HIO|E{£ 1-dim O & HEslof Ho| & HS HE

one hot enc = preprocessing.OneHotEncoder()
one hot enc.fit(dataf :|, 0].reshape(-1,1)) 1-dim ﬁ§|-'5|.0:| fit
| =

onehotlabels = one hot enc.transform(data[:,0].reshape(-1,1)).toarray()

onehotlabels 1-dim ¥H2t< transform > ndarray
array ([ -1

-1,
-1
-1,

0
0
0.
0
1 -1,

= I N L
"« @& @& & B
oo O OO

[
[
[
[
[

- b | - - b |
- - - - -



What we did

- Category data encoding — one-hot encoding
- Missing value handling

- Data drop

- Log transformation

- Data binning



Data
/ Cleansing \

Feature Exploratory

Engineering Data Analysis



What we will do

- Encoding Families

- Feature Interactions
- Scaling

- Feature Selection

- Data binning



Feature
Engineering



Feature



Feature Engineering

7V HE B4 RE X



Feature engineering

Generation Selection
- Binarization, Quantization |- Univariate statics
- Scaling (normalization) - Model-based selection
- Interaction features - lterative feature selection

- Log transformation - Feature removal




Log transformations

- HIO|E{e| 2x7} FTHX o2 RS i(poisson)

. ME e Hlo|E 7t YREE X
. o . Long-tail graph
- Poisson = Normal distribution

- 2791 FL2E, XE BN, 2N Tof, 174

- np.log or np.exp S2| E+E Al



Log transformations

GET SPECIFIC AND GET FOUND

Millions

TOP 100 KEYWORDS
100Ks

THETOP10,000
KEYWORDS MAKE UP
LESSTHAN 209% OF
OVERALL SEARCH
TRAFFIC. 700 COMES
FROM LONG TAIL

v
d
X
b= 0P 500 KEYWORDS EYW
43% of Amazon's Sales s F R ORES K DRDS’ HIGHLY
e SPECIFIC 4-6 WORD
Books carried g 10Ks TOP 1K KEYWORDS
by traditional apl PH RASES
skares = TOP 10K KEYWORDS
=] Thousands
=
L
o
57% of Amazon's Sales = Hundreds
Books only carried by Amazon Tens
<5
18.5% 11.5% 10*
FATHEAD CHUNKY MIDDLE LONG TAIL

# OF KEYWORDS
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Log transformations
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fig = plt.fiqurel()
fig.set_size_inches(10, 5)

ax = ||
colors = ['b', 'g', e, 'm', 'y, k']
for 1, col_name in enumerate(numeric_columns):
ax.append(fig.add_subplot(2,2,1i+1))
X_1 = np.log108(one_hot_df|[col_name]+0.5)

ax|i].hist(X_1)
ax|i]|.set_title(col_name)




Log transformations

Age SibSp
EJ:I{I 1 mn i
-q-l:":' | Eﬂﬂ 7
400 -
200 -
200 -
0 0 A
0.0 05  parch0 15 20 0 uzFarF_nq 06 08
1000 - c00
800 -
400 -
600 -
400 + 200 A
200 A
; o wm |

0.2 00 02 0.4 0.6 0.8 10 0.0




Mean encoding

- Category H|O|E{= &4 One-hot Encoding?
> X, CieFst Q13T 7|80 /US

- &5l o= YZAO'" st 225 &8¢t
Mean EncodingO| A&



- Label

Mean encoding

IR =2 1 XM= BE7I EXoIX| 55

id job

job_label

target

1 Doctor
2 Doctor
3 Doctor
4 Doctor
5 Teacher
6 Teacher
7 Engineer
8 Engineer
9 Waiter
10 Driver

o W W NN e e

=T I e = B e e e B e s B e

2,5

1,5

0,5

’ i I , I i I T I
1 2 3 4 5

B Class0

BClass1




Mean encodin

(e

— - rey O
- Mean 213 B2EO| ZI2 F T £+ QS
id job job_mean target 33
1 Doctor 0,50 1 9
2 Doctor 0,50 0
3 Doctor 0,50 1 |7
4 Doctor 0,50 0 2 p s
5 Teacher 1 1 15 o Clace 1
6 Teacher 1 1
7 Engineer 0,50 0 :
8 Engineer 0,50 1 05 -
9 Waiter 1 1 .
10 Driver 0 0 ) 05 1




Mean encoding

Pclass
temp_df = pd.merge( 1 0 B3
one_hot_df| |, y_true, > 0'4?
left_index=True, right_index=True) '
3 0.24

temp_df.groupby( ) [ | .mean()

MName: sSurvived, dtype: floatbd

0 0.24
temp_df| | .replace( 1 0 B3
temp_df.groupby( ) P 0.24
3 0.63
4 0.24
886 0.47
ge7  0.63
888  0.24
889  0.63
890 0.24
Mame: Pclass, Length: 891, diype: floatbd
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Mean encoding

=3 o e, 23 o UL 450 4o E #

Test, One hot enceding

q — mean encoding — Test, Label encoding
O 65 e 8 34 —— Test, Frequency encoding
* N ———— Iabel enCOdlng Test, Mean encading, alpha=0
Test, Mean encoding, alpha=2
O 60 N i3 —— Test, Mean encoding, alpha=5%

Test, Mean encading, alpha=5, 4 folds
Test, Mean encoding, alpha=5, 7 folds
—— Test, Mean encoding, alpha=>5, expanding mean

0.55

0.50

loss

0.45
0.40

0.35

1 2 3 = 5

27

tree depth 0 50 100 150 200 250 300 350 400




Mean encoding
- Regression Task= the 402 1

label, =

https://www.kaggle.com/vprokopev/mean-likelihood-encodings-a-comprehensive-study



https://www.kaggle.com/vprokopev/mean-likelihood-encodings-a-comprehensive-study

Mean encoding

- Overfitting= | AH5t7| 2/5H smoothingS AFEE

(pc k ’nc —|— pglobal k C\f) def calc_smooth_mean(df, by, on, m):

label, =

(’nC -+ CX) mean = df[on].mean()

agg = df.groupby(by)[on].agg(|
counts = agg] ]
means = agg| ]

smooth = (counts * means + m * mean) / (counts + m)

return df[by].map(smooth)

https://www.kaggle.com/vprokopev/mean-likelihood-encodings-a-comprehensive-study



https://www.kaggle.com/vprokopev/mean-likelihood-encodings-a-comprehensive-study

Mean encoding

0|2]0f| = B2 Encoding 7|"™H&0| Exlgt

© Encoding Methods

e Backward Difference Contrast [2][3]
¢ BaseN [6]

* Binary [5]

e Count [10]

* Hashing [1]

e Helmert Contrast [2][3]

¢ James-Stein Estimator [9]
e |eaveOneOut [4]

* M-estimator [7]

¢ Ordinal [2][3]

¢ One-Hot [2][3]

¢ Polynomial Contrast [2][3]

https://github.com/scikit-learn-contrib/categorical-
e Target Encoding [7] encoding?fbclid=IwAR3b4X2XUuMJWuHOLxTs9Hf4rAzHe
* Weight of Evidence [8] S6W‘Q3DegG1 kuZwh KhZe_leznG nvM

e Sum Contrast [2][3]



https://github.com/scikit-learn-contrib/categorical-encoding?fbclid=IwAR3b4X2XUuMJWuH0LxTs9Hf4rAzHeS6W-q3DegG1kuZwhKhZejTmznG_nvM

Interaction features

- 7| & featureS2| T2 MZ L featureS MM
- DataOj| Clj'et A}H X| A3} O|slj7 2
- Polynomial featureg A%t X133} 75 > =2 H|E

sklearn.preprocessing.PolynomialFeatures

- ME¥o=z WIY 2452 U8 S XH5H IE 58

=
- weight + time-period, sensor1 + sensor2


http://scikit-learn.org/stable/modules/classes.html#module-sklearn.preprocessing

Interaction features

Housing price prediction.
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Interaction features

- Category Combination

Survived = 0.0 Survived = 1.0
300
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count
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Interaction features

temp_columns = | ,
one_hot_df]| ] =

df| | .map(str)+df]| 1
one_hot_df| ] =
df | | .map(str)+df]|

.map(str)

| .map(str)
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Interaction features

from sklearn.preprocessing import PolynomialFeatures
poly_features = PolynomialFeatures(degree=2)
X_poly = pd.DataFrame(

poly_features.fit_transform(
log_bin_one_hot_df|[numeric_columns]))
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Feature Selection
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Feature engineering

Generation Selection
- Binarization, Quantization |- Univariate feature selection
- Scaling (normalization) - Model-based selection
- Interaction features - lterative feature selection
- Log transformation - Feature removal

- Dimension reduction

- Clustering



Feature selection

- D E feature 0| HIEA| model S50 €1 X| Q=
- O™ featureE2 M5 g 26|28 LA &

- {2 B2 feature > overfitting2| & Q!

- BElof [m2tA 2 ot featureES MEHS

- WO AL feature M7 S &S £} M SEAH

- CfFsH 7|1 [ E0f CHsl S5



Univariate feature selection

- E7| nElg 7|80 2 St x| X 9| featureS MEH
- Chi square, F-test, ANOVA S2| E4| 222 A}

=
- YZX 3} SILEO| featureZt2| EA|X |2|0|E &
- FE MY RE M F-ESHA ALEE =

=
- 2 A| At S = Q= feature selection 7|



SelectKBest

sklearn.feature selection.SelectKBestq

class sklearn.feature selection. SelectKBest (score_func=<function f_classif>, k=10) [source]

>>> from sklearn.datasets import load_iris

>>> from sklearn.feature_selection import SelectKBest
>>> from sklearn.feature_selection import chi2

>>> 1ris = load_1iris()

>>> X, Yy = 1ris.data, 1iris.target

>>> X.shape

(150, 4)

>>> X_new = SelectKBest(chiZ2, k=2).fit_transform(X, y)
>>> X_new. shape

(150, 2)



SelectKBest

SelectKBest SelectPercentile
For regression: f regression, mutual info regression
For classification: chi2, f classif mutual info classif

http://scikit-
learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html


http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html#sklearn.feature_selection.SelectKBest
http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectPercentile.html#sklearn.feature_selection.SelectPercentile
http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.f_regression.html#sklearn.feature_selection.f_regression
http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_regression.html#sklearn.feature_selection.mutual_info_regression
http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.chi2.html#sklearn.feature_selection.chi2
http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.f_classif.html#sklearn.feature_selection.f_classif
http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_classif.html#sklearn.feature_selection.mutual_info_classif

f _classif

ANOVA F-value between |label/feature for classification tasks.

mutual info classif

Mutual information for a discrete target.

chi2
Chi-squared stats of non-negative features for classification tasks.

f regression

F-value between labelfeature for regression tasks.

mutual info regression

Mutual information for a continuous target.

SelectPercentile
Select features based on percentile of the highest scores.

SelectFpr
Select features based on a false positive rate test.

SelectFdr
Select features based on an estimated false discovery rate.

SelectFwe
Select features based on family-wise error rate.

GenericUnivariateSelect
Univariate feature selector with configurable mode.



Model based feature selection

- HR RES2 ots 1PH0|A] ATt featureE A=
- L1 penalty, Tree-based model
- Feature importance= 7|H9t2 £ St feature £1E40| 7}
- CHE BEI9| feature MEHO| MK 2| CHA|E 2L 7=
SHHO|| 2= featureS 12T > A7t 57t S5 4
=)

o
- Tree-based ensemble A|E82 0|T £%=0| o|O] &)



sklearn.feature selection.SelectFromModel

class sklearn.feature selection. SelectFromModel (esfimator, threshold=None, prefit=False, norm_order=1)
[source]

Meta-transformer for selecting features based on importance weights.

select = SelectFromModel (estimator=RandomForestRegressor(n_estimators=100), threshold="median")

select.fit(X train, y train)

# transform training set
X train selected = select.transform(X train)



Iterative Feature Selection

- HI2 MO 2 featurel| £ =A™ > %|H feature A1EH
- 17 H 9 n7 H , EEE n7 H 9 17 H (Recursive Feature Elimination, RFE)
-0 =2 AlLHH|E, 85 BH

- 2| 2 O] stepwise selection 7| 0| =X scikit-leam x)
- Tree A€ 2HZ A2 feature importanceE Al

- GIO|E{2] contextE 25 [ff, AFESI7| 0|



Recursive Feature Elimination

sklearn. feature_selection.RFE

Parameters: estimator : object

A supervised learning estimator with a fit method that provides information about
feature importance either through a coef_ attribute or through a feature_importances_

attribute.
n_features_to_select : int or None (default=None)

The number of features to select. If None, half of the features are selected.

step : int or float, optional (default=1)

If greater than or equal to 1, then step corresponds to the (integer) number of features to
remove at each iteration. If within (0.0, 1.0), then step corresponds to the percentage

(rounded down) of features to remove at each iteration.

verbose : int, default=0

Controls verbosity of output.
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Feature scaling
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Feature scaling

Feature?t2| Z|CH-Z|A 42| XIO| & S

¥
I

Yy = B1x1 + Bax1 + 0

61 min| |max

62 miin| | max



e

Feature scaling 1=}

- Min-Max Normalization
7|1 E HA0| HE ML Hrf-2| A2 HY
Ut o= 0uf 1 AlO| f2 = HZAT

| NI
(@) min

T = (new_max — new_low) + new_low
Lmazr — Lmin

|2~ 12,000 / Z|Clf 98,000 > 7|E 4% 73,600



Feature scaling &}

Standardization (Z-score Normalization)
|E Hp0f| HRSE Bt X2 HE
A Mix-Max?8| 2= 2§ Ifj 87}

. (i) _
(0 _TV—u

std_norm S

o 54,000 / =X} 16,000 > 73,600
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Min-Max Normalization

(D)

— Lmin

Lmazr — Lmin

(new_max — new_low) + new_low

( df["A"] - Af["A"].min() )
/ (df["A"].max() - df["A"].min()) * (5 - 1) + 1
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A

Z-Score Normalization

BEL"B" ]

X

(i ) — p

std_norm S,

( dE[ ' B"] - df["B"].mean() )

/ (df["B"].std() )
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Feature Scaling Function

def feture scaling(df, scaling strategy="min-max", column=None):

if column == None:
column = [column name for column name in df.columns]
for column name in column:
if scaling strategy == "min-max":
df [column name] = ( df[column name] - df[column name].min() ) /
(df[column name].max() - df[column name].min())
elif scaling strategy == "z-score":
df[column name] = ( df[column name] - \
df [column name].mean() ) /\

(df [column_name].std() )
return df



Feature scaling with sklearn

- Label encoder®} O%F7}X| 2. sklearnk. feature scale X| ¥
- MinMaxScaler2}l StandardScaler Al

from sklearn import preprocessing

std scale = preprocessing.StandardScaler().fit(
df[[ 'Alcohol’', 'Malic acid']])
df std = std scale.transform(df[[ 'Alcohol’, 'Malic acid']])

df std[:5
array([[ 1.51861254, -0.5622498 |,

 0.24628963, -0.49941338],
 0.19687903, 0.02123125],




Feature scaling with sklearn

- Preprocessing= 25 fit > transform?| 1’5 AHH
- O|f= label encoder?} &
- Tk scaler= 2HHO| 2] columnE X|E| 7t

minmax scale = preprocessing.MinMaxScaler().fit(df[[ 'Alcohol’', 'Malic acid']])

df minmax = minmax scale.transform(df[[ 'Alcohol’', 'Malic acid']])
df minmax|:3

array([[ 0.84210526, 0.1916996 ],
[ 0.57105263, 0.2055336 ],
[ 0.56052632, 0.3201581 ]])



Alcohol and Malic Acid content of the wine dataset

@ input scale
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Model & Trainning






| O|E{ numpy2 HEt

X_train = all_df/| :number_of_train_dataset].values
X_test = all_df|[number_of_train_dataset:]|.values

y_train = y_true.copy()




from sklearn.ensemble import RandomForestClassifier

clf = RandomForestClassifier(
n_estimators=160, max_depth=206, random_state=0)

clf.fit(X_train, y_train)

y_pre = clf.predict(X_test)



Data Split









Classification:
(1.00) Dog
(0.00) Cat
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Overfitting
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Overfitting

St 0ol & uict = =3} > M=2 HI0jE|2] o= |

A

Underfitting

>

Just right

A

'\_\NJ\,

>

Overfitting

https://goo.gl/aP8iFa






=EH H0|E = & LI M BIISHRH
A H|0|E 7} Ml&E MHITH 2 S5 =S



Training Set

Model Performance
Generation Metrics

Data Set




Holdout Method (Sampling)

- 0| & Trainingd} Test} LI A RES ‘d/dot HAESH= 7|
- 71 Lt ol m el M-S st ojoje MEH MET 7™
- Training} TestE L+ H|&2 CI0|E 2| A 7|0 2} C}=

import numpy as np
from sklearn.model_selection import train_test_split

X, v = np.arange(10).reshape((5, 2)), range(5)

X_train, X_test, y_train, y_test = train_test_split(
X, vy, test _size=0.33, random_state=42)






Training - Validation - Test

Training Validation Test

Model Model Model
Building Check Evaluation



Validation Set

- Test Set2 ModelO| MM Al HLCH Training Setd]| ZEgtk|X| 2totof gt

- Test Setd} & 2| Model Al Modeldll 452 E71517| /6K AHE
- Hyper Parameter Turning Al ‘ds 87}= Soll Overfitting & X]

- Training SZH| Model?] 452 A



Training Validation Test
Set Set Set



Original set l

Training set Test set

Training set Validation set Test set

Training, tuning, and

evaluation m

Machine learning
algorithm

Predictive Model &
E— Final performance estimate

From: Python Machine Learning, https://goo.gl/JR9vxM



K-fold cross validation
-5t OI0|E{E KHH LHR| A Test®} TrainS AA| © TestQ] WA 2 Al
C =

=
- BEIO| parameter F i, ZIEtol DEIO| XS M5 S S Al

Training Set Validation Set

Validation Set

Validation Set

Validation Set



K-fold Cross Validation

from sklearn.mﬂdel_selectiﬂn imEurt EFold

kf =

KFold(n_splits=10, shuffle=True)

for train_index, test_index in kf.split(X):

print("TRAIN - ", train index[:10])
print("TEST - ", test index[:10])
TRAIN - [0 12345678 9]
TEST - [ 16 22 24 25 28 5B 60 79
TRAIN - [0 12345678 9]
TEST - [ 23 30 33 56 66 6% 72 73
TRAIN - [0 1 2 3 4 5 6 7 9 10]
TEST - [ 8 12 3% 41 61 78 96 97
TRAIN - [0 1 2 3 4 6 7 8 9 10]
TEST - [ 5 15 31 38 46 85 91 45
TRAIN - [0 12345678 9]
TEST - [ 18 37 40 43 55 57 75 77

FAT:™AW T 17

r b |

i | i | A

=

. - ] 1 M

1 1 1

92

74

100

116

S0

110]
107 ]
112]
124 ]

104 ]



Leave One Out (LOO)

- Simple cross validation = k = data size
- SteHof| of 7 o] | O] E{ 2t Test set2 2 At > & kHH iteration

- total samples -

iteration 1/N:

iteration 2/N:

iteration 3/N:

iteration N/N:

https://www.researchgate.net/profile/Nikolaos_Chlis/publication/266617511/figure/fig
11/AS:295705362092036@1447513060277/Leave-One-Out-Cross-Validation.png



Etc...

- RepatedKFold - 50| ZghEl K-Fold ‘4-d

- LeavePOut - StEHOj| P7Z &2 (Not LOO for one data)
- ShuffleSplit - S & H (= k|=) H0|E Sampling

- StratifiedKFold — Y 2} H| 0] [z} E&

- GroupKFold - AEE £ H|0|E{ & Sampling



Cross validation
Train-Validation-Test
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Imbalanced dataset

Xl dataset
X} 0= dataset

TOjst F%2| dataset

t710| £

2l =] dataset

B 59| dataset= imbalanced dataset



How to handle imbalanced dataset

- ™3t performance metricg 4% (accuracy X)
- precision, recall, AUCO| X%
- X H ot training dataset2| resampling
- oversampling, under sampling, data augmentation

- Ensemble



original
dataset

training
dataset

test
dataset

Dataset resampling

FALSE
FALSE .




Dataset resampling

- Imbalanced class’} &= 26| LC}IH

under sampling > FALSE H|O|E{& &

| — I~

- Imbalanced class’} £=o}C|H
over sampling > TRUE C|O|E{ & &&



imbalanced-learn

- scikit-learn?] imbalanced dataset 2% =

- under sampling, over sampling, SMOTE S H| &

https://github.com/scikit-learn-contrib/imbalanced-learn

pip Iinstall -U imbalanced-learn

conda install —c conda—-forge imbalanced—learn



Stratified sampling

original

dataset FALSE

training FALSE
dataset |

test FALSE
dataset




Imbalanced dataset handling process

MH| dataset¥|A] test2} dev set2 LHE (stratified)

dev set2 = under sampling EE= oversampling
EE"9-| AHkI

Test setQ & BHO| HS
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Regression metrics

- Mean Absolute Error
1 — 1 —
MAE = = = =
n;w Uil n;kﬁI

£EXFe| 2LiZX2] Sum

from sklearn.metrics import median_absolute_error
y_true = [3, -0.5, 2, 7]

y_pred = [2.5, 0.0, 2, 8]
median_absolute_error(y_true, y_pred)



Regression metrics

- Root Mean Squared Error (RMSE)

1 T
SE = , | — E i — Ui)?
RMSE \\/nlt:l(y Ui )

XK Hl22| suml| EE

from sklearn.metrics import mean_squared_error
y_true = [3, -0.5, 2, 7]

y_pred = [2.5, 0.0, 2, &]
mean_squared_error(y_true, y_pred)



Regression metrics

- R squared A
R2 — 1 > iy — yi)Q.
Zz(y’b — M)2
01} 1A}0] X2 3H & 58 52 ML E x|

from sklearn.metrics import r2_score
y_true = [3, -0.5, 2, 7]
y_pred = [2.5, 0.0, 2, 8]
rZ_score(y_true, y_pred)
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Confusion Matrix (& a3

True Positive (TP)
- &M Za F@)ofl cHet ol =5 0] 5=

True — 0J|=0| St

Positive — &(1) ¢! 4% Fetual

Class

Prediction
1 0
True False
Positive Negative
False True
Positive Negative




Confusion Matrix (& a3

True Negative (TN)
- & 23t A (0)0ll et ol F0] B

Prediction
0| Oore 1 0
True - 0|=50| = T —
1 ue | False
Xl o] 740 Actual Positive | Negative
Negatlve 7-I > (O) - o Class 0 False True
Positive Negative




Confusion Matrix (& a3

False Positive (FP)

- 2 X 23F F)ofl chet oj=0] SE

False — 0J|=0| =&

—
Positive - & (1) ¢l A%

Actual
Class

Prediction
1 0
True False
Positive Negative
False True
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Confusion Matrix (& a3

False Negative (FN)
- X 21t AR (0)of ciet ol =50] FE

Prediction
1 0
False - 00| &
1 Tr.ug Falsg
- _ y OI 74 O Actual Positive Negative
Negatlve 7-I A(O) - OT Class O False True
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sklearn.metrics.confusion matrix

sklearn.metrics. confusion_matrix (y_frue, y _pred, labels=None, sample_weight=None) ¥ [source]

from sklearn.metrics import confusion matrix

y_true = [1, O, 1, 1, O, 1] Prediction
y_pred = [0, O, 1, 1, O, 1
confusion matrix(y true, y pred) 0 1
array([[2, O], 0
(1, 311) True
Class
1

tn, fp, fn, tp = confusion matrix(y true, y pred).ravel()
tn, fp, f£n, tp

(2, 0, 1, 3)



Metrics for classification performance

- Accuracy (dztr)
- Error Rate (2X}2)
- Precision (Y T)
- Specificity (50| &)

- Sensitivity (21ZHE)

TP+TN
TP+ TN+FP+FN

Accuracy=

FP+FN
TP+TN+FP+FN

Errorrate= =(1-Accuracy)

TP

PPE’C"S“G”:ﬁ (PPV: Positive Predict Value)

TN

Spemﬁct@:m (TNR: True Negative Rate)

TP

Sensitivity= TP+FP (TPR: True Positive Rate)
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‘d=2t (Accuracy, ACC)

- ™A cijolE thH] ‘E=s5tA o=et Zi+=2| HE

Prediction
TP + TN 1 0
ACC =
TP + TN T FP + FN 1 True False
Actual Positive Negative
ACC = 1— ERR R0 | e | e




QL X2 (Error Rate, ERR)

- ™A cijo]E CiH] R E =5t o=t /2] H|E

Prediction
FP + FN 1 0
ERR =
TP+ TN+ FP + FN 1 True False
Actual Positive Negative
ERR =1 — ACC 0| e | e




import numpy as np

from sklearn.metrics import accuracy score
y pred = np.array([0, 1, 1, 0])

y true = np.array([0, 1, 0, 0])

sum(y true == y pred) / len(y true)

0.75

accuracy score(y true, y pred)

0.75
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https://svds.com/learning-imbalanced-classes/



Metrics for
Imbalanced Dataset




U (Precision, Positive Predictive Value)

- 2’80|2ta of| 5ot H| =
=) O

go|ct ZOtLE E

Prediction
TP 1 0
PRECISON(PPV) —_ 1 True False

TP + FP Actual

Class 0 False True
Positive | Negative

Positive | Negative

https://en.wikipedia.org/wiki/Sensitivity_and_specificity



from sklearn.metrics import precision score

y pred = np.array([0, 1, 1, O
y true = np.array([0, 1, 0, O]

sum((y pred == 1) & (y pred == y true)) / sum(y pred)

0.5

precision score(y true, y pred)

0.5



sklearn.metrics.precision_score

sklearn.metrics. precision_score (y_true, y_pred, labels=None, pos_label=1, average="binary’
sample_weight=None) [source]

labels : list, optional

pos_label : str or int, 1 by default

average : string, [None, ‘binary’ (default), ‘micro’, ‘macro,
'samples’, ‘'weighted’]

sample_weight : array-like of shape = [n_samples],
optional



average : siring, [None, ‘binary’ (default), ‘micro’, ‘macro’, ‘'samples’, ‘weighted’]

This parameter is required for multiclass/multilabel targets. If 8¥one , the scores for each

class are returned. Otherwise, this determines the type of averaging performed on the
data:

"binary’ :
Only report results for the class specified by pos_label . This is applicable only if
targets ( v_{true,pred} ) are binary.

‘micro’ :

Calculate metrics globally by counting the total true positives, false negatives and
false positives.

‘macro’ :

Calculate metrics for each label, and find their unweighted mean. This does not take
label imbalance into account.

‘'weighted' :
Calculate metrics for each label, and find their average, weighted by support (the

number of true instances for each label). This alters ‘macro’ to account for label
imbalance; it can result in an F-score that is not between precision and recall.

‘samples ' :
Calculate metrics for each instance, and find their average (only meaningful for
multilabel classification where this differs from accuracy score ).



from sklearn.metrics import precision score

y pred = np.array([0, 1, 1, O
y true = np.array([0, 1, 0, O]

sum((y pred == 1) & (y pred == y true)) / sum(y pred)

0.5

precision score(y true, y pred)

0.5



y true = [0, 1, 2, 0, 1, 2]

y_pred = [0, 2, 1, 0, 0, 1]

confusion matrix(y true, y pred
HH B

array([[2, O, 0], "C.

Calculate metrics globally by counting the total true positives, false negatives and

[ 1 ’ 0 ’ 1 ] / false positives.

‘macro’ : (LabEIE Zk -6=-||-)9-I rgﬂ'
[ 0 r 2 ’ 0 ] ] ) Calculate metrics for each label, and find their unweighted mean. This does not take
label imbalance into account.

precision score(y true, y pred, average='macro')

0.22222222222222221 precision_score(y_true, y_pred, average=None)

array([ 0.66666667, O. , 0. 1)

precision score(y_true, y pred, average='micro')

0.33333333333333331



OZ & (Sensitivity, Recall, True Positive Rate)
- AN 378 Ho|e = 37do|2t of| F¢t v =, HtekE, JE S

gl - eholatn olso5tA =712

ne m
=
I
A0
oM

Prediction
RECALL(TPR) TP P 1 ;
— —_ — rue alse
TP+ FN P actual |1 | posiive | Negative
Class 0 False True
Positive | Negative

https://en.wikipedia.org/wiki/Sensitivity_and_specificity



from sklearn.metrics import recall score

Il

y pred np.array([0, 1, 1, 0])
y true = np.array([0, 1, O,

sum((y _true == 1) & (y pred == y true)) / sum(y_ true)
+- RECALL(TPR) 7 7 :redidio:)
N TP Bs FN N P True False
recall score(y true, y pred) Actual 1 Positive | Negative
Class 0 False True
Positive | Negative

1.0



y true = [0, 1, 2, 0, 1, 2]
y_pred = [0, 2, 1, 0, O, 1]
recall score(y true, y pred, average= macro )

0.33333333333333331

recall score(y true, y pred, average='micro')

0.33333333333333331

recall score(y true, y pred, average=None)

array([ 1., 0., 0.1])
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Specificity, True Negative Rate)
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Prediction
pe TN TN 1 0
— e True False
TN + F P N Actual 1 Positive | Negative
Class 0 False True
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https://en.wikipedia.org/wiki/Sensitivity_and_specificity
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F1 Score (F-measure,

- Precision2} Recall| E&tst
P~

- Precisiond} Recall9]

Prediction

precision x recall 1 0

Fl = 2 — 1 True False
pT'eClSlOTl + Tecall Actual Positive | Negative

Class 0 False True
Positive | Negative

https://en.wikipedia.org/wiki/Sensitivity_and_specificity



from sklearn.metrics import f1 score
y pred = np.array([0, 1, 1, 0])
y true = np.array([0, 1, 0, 0])

pre = precision score(y true, y pred)
rec = recall score(y true, y pred)

2 * (pre * rec) / (pre + rec)

0.66666666666666663 F ::ZIW%HHSMWl*TecaH
1 precision + recall

fl score(y true, y pred)

0.66666666666666663



y true = [0, 1, 2, 0, 1, 2]
y_pred = [0, 2, 1, O, O, 1]
fl score(y true, y pred, average= macro )

0.26666666666666666

fl score(y true, y pred, average='micro')

0.33333333333333331

fl score(y true, y pred, average=None)

array([ 0.8, 0. , 0. 1)



Example

PRECISON(PPY) = ———=
Prediction
RECALL(TPR) = ——+ 1P
1 0 “TP+FN P
TN TN
At 90 210 | 300 spc= TV __T!
Class 140 | 9560 | 9700
230 9770 10000




Precision - Recall Curve

- 0= 2tE ThresholdE H3}A|7q Precision/Recall &8

- A 4= 2 I F-&5H A8 7ts

2-class Precision-Recall curve: AP=0.88

1.0 1

0.8 1

0.6 1

0.4 1

0.2 1

0.0 T T T T
0.0 0.2 0.4 0.6 0.8

1.0



import numpy as np

from sklearn.metrics import precision recall curve

y true = np.array([(0, 0, 1, 17])

y scores = np.array([0.1, 0.4, 0.35, 0.8])

precision, recall, thresholds = precision recall curve(
y _true, y scores)

precision

array([ 0.66666667, 0.5 , 1. , 1.

recall

array([ 1. , 0.5, 0.5, 0. 1)

thresholds

array([ 0.35, 0.4 , 0.8 1)



Precision - Classification Report

- Classification =H|0| A St Precision, Recall, F1 Zi} &

precision recall fl-score support
class 0 0.50 1.00 0.67 1
class 1 0.00 0.00 0.00 1
class 2 1.00 0.67 0.80 3

avg / total 0.70 0.60 0.61 5



from sklearn.metrics import classification report
y true = [0, 1, 2, 2, 2]

y pred = [0, 0, 2, 2, 1]

target names = [ 'class 0', 'class 1', 'class 2]

print (classification report(y true, y pred, target names=target names))

precision recall fl-score support
class 0 0.50 1.00 0.67 1
class 1 0.00 0.00 0.00 1
class 2 1.00 0.67 0.80 3

avg / total 0.70 0.60 0.61 5
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Human knowledge belongs to the world.



