Guide to ML data prepration

Director of TEAMLAB
Sungchul Choi

ML Process

Hold out Test |
Dataset |

Dat ,————>| Test Dataset
ata .)

Lf-|—7 |

Data Data Train Train ML Evaluate
A{:qmsnmn ‘ \ Cleaning ‘ Dataset Model 4’{ Test Mﬂde'H Madel }_' Deploy Model
Gl01E| Hxia) J ssx8
O x| AX|LI0{E =

EDA Hyper parameter turning
Ensemble method

ML Process

Hold out Test |
Dataset |

Dat ,————>| Test Dataset
ata .)

|—h—7 |

Data Data Train Train ML Evaluate
Aﬂqmsnmn ‘ \ Cleaning ‘ Dataset Model 4’{ Test Model H Madel }_' Deploy Model
Gl01E| Hxia) J ssx8
o x AX|LI0{E =

EDA Hyper parameter turning
Ensemble method

= 5t7| %15l 3|0} 3l= A S!

- H|O|E{ L}+7| : Train , Validation, Test
- Ojojg| HX{2| 57|
- BME Xtr £4

- I AX[L|ofE

Machine Learning SYSTEM

Machine
Resource Monitoring
. Management
Configuration Data Collection Serving
Infrastructure

Analysis Tools

Feature

Process
Extraction

Management Tools

Figure 1: Only a small fraction of real-world ML systems is composed of the ML code, as shown
by the small black box in the middle. The required surrounding infrastructure is vast and complex.

Hidden Technical Debt in Machine Learning Systems (D Scully et al @Google)

Data Acquisition

From Kaggle

General ML Process
Training / Test Set

Training Set

Model Performance
Generation Metrics

Data Set

Why G| 0| E{ 21X

s

- Train1} Test CJ|O|E{ AllO] ZF AHE 0= €2 MX 2

- H|O|E{0]| LL}2} TrainGi|2t U1 TestOf|= EXHSIX
> X7| GIo|E] ™A E|A| 3 S 2HS0{0f g

- OIoJE|e] £2F & O &7l = = A= MAIE?)

28 AH|20M= 2

DATA_DIR =

data_files = reversed(
'os.path.join(DATA_DIR, filename) \
for filename in os.listdir(DATA_DIR) |)

df_list = ||

for filename in data_files:
df_list.append(pd.read_csv(filename))

df = pd.concat(df_list, sort=False)

df = df.reset_index(drop=Irue)

2RO A] yE|O|Ef 2 K| A

Traind} Test |0|E{9] | X|= 7|

number_of_train_dataset = df.Survived.notnull().sum()

number_of_test_dataset = df.Survived.isnull().sum()

F i b

y_true = df.pop()| :number_of_train_dataset

Data Preprocessing

OEA 7?2

Data Cleansing

Feature Engineering

Exploratory
Data Analysis

Data
/ Cleansing \

Feature Exploratory

Engineering Data Analysis

H|OE] Xcfef M=

FC}

.
o
| -

ChA| 2ol O 2aF B EE[of

Cl (merge &+ ET9)

ot

.
o

- HM2|7 AES B4

=Xl

al
L

ZHO|S2 list=

Zre|opo|!

3|51 A

=
L.

o LEE

- GO

‘dot7|m

F

Kl
Ll |

- §|O|E{ =

HO|E| L E

- GJO|E{of CHE A2| iR U Wake Ma|s L E

- 7| =Xl Hxe| gt d

I
ujn
jo

A
u

- Cilo]E{of] Chet ofo|E|ol S Fe|2f X|=

.isnull().sum()

.describe()
head(2).T

Data Cleansing issues
- H|O]|E47} bt A2 (BEX[2] A 2)
- 22 El §|O0|E{(category) ClIO|E{2] X2

- H|O|E{2] scale2| A[O]7} O} 37| T BF

Missing Value

Missing Value Strategy

- B0 E{ 7} 812 ™ sample= drop

- |0 E{7} Bl= &2 7 <~& 5 sample& drop
- H|0|E{ 7} 42| 1= feature= feature X}x|& drop
- i, a2 = H|0{ U= HIO|E & <7

Data

A Faxmple from — Rtlps Archrisalbon, comsovthon/oandas missing data htmf
raw_data = {'first_pame': ['Jason', np.nan, 'Tina', 'Jake', "dmy'],

‘last_name': ['Miller', np.nan., "Ali', "Milner', 'Coocze'],
‘age': [42, np.nan, 36, 24, 73],
‘sex't ['m', np.nan, 'f', 'm', "f']

‘preTestscore’ s [4, np.nan, np.nan, 2, 3],

‘postTestScore': [25, np.nan, np.nan, 62, 701}
df = pd.DataFramelraw_data, colunns = ['first_name', 'last_name', 'age', 'sex', 'prelestScore’, 'postTestScore'])
o f

first_name last name age sex prelesiScore postTestScore

0 Jason Miller 42.0 m 40 26.0
1 MNaM MaM MNaN NaN MaM MaN I
2 Tina Ali 36.0 f M aM M aM
3 Jake Milner 24.0 m 20 62.0
4 Amy Gooze 730 f 3.0 70.0

Data drop

df cisnul 1), sum()

first_name

|l ast _name

age

SEX
preflestscore
post Test score
dtype: intbd

df _no_missing
df _no_missing

1
1
1
1
Z
Z

= df . dropnal)

drop nan = H|O|E{S0| Al2}H

NaNO| H|O|E{E€ columnE 2 T4

first_name last_name age sex prelesiScore postTestScore
0 Jason Miller 42.0 m 4.0 25.0
3 Jake Milner 24.0 m 2.0 62.0
4 Amy Gooze /3.0 f 3.0 70.0

df _cleaned = df . dropnalhow="all "]

Data drop

df_cleaned 2= GIoJE{7} H|O] A2 drop

firsi_name Ilast name age sex prelesiScore postTestScore
0 Jason Miller 42.0 m 4.0 25.0
2 Tina Ali 36.0 f NEW NEW
3 Jake Milner 24.0 m 2.0 G2.0
4 Amy Gooze 730 f 3.0 0.0

df['location'] = np.nan

Data drop

NANZ= M/d column

df . dropnalaxis=1, thresh=3)

H|O|E{7} Z| & 471 O &

gl W drop

df

first_name | last_name |age |sex |preTestScore | postTestScore |location first_name |last_name |age |sex |preTestScore postTestScore
0|Jason Miller 120(m |40 25.0 NaN 0 |Jason Miller 420 |m 4.0 25.0
1|NaN NaN NaN | NaN | NaN NaN NaN 1| NaN NaN NaN | NaN | 3.0 NaN
2| Tina Al 36.0 |f NaN NaN NaN 2| Tina All 36.0|1 3.0 70.0
3| Jake Milner 240|m |20 62.0 MNaM 3 | Jake Milner 240 |m |20 62.0
4 [Amy Cooze T30 |1 3.0 T0.0 MNaN 41 Amy Cooze T3.0|f 3.0 0.0
df . dropnalaxis=1. how="all") column 7|'|,'_:'2E &!-x."

first_name |last_name |age |sex |preTestScore | postTestScore
0| Jason Miller 4201m 4.0 250
1| MNaN MaM MaM | NaM | 3.0 MaM
2| Tina Ali 36.0 |1 3.0 700
3 | Jake Milner 240 | m 20 62.0
4 [Amy Cooze T3.0|f 3.0 T0.0

df . dropnal thresh=5)

Data drop

571 o] & HIO[E{7t K| 222 Drop

first name |last name |age |sex |preTestScore | postTestScore | location
0| Jason Miller 420(m 4.0 29.0 MNaM
v | Jake Milner 240(m 2.0 62.0 MNaM
4 | Amy Cooze 73071 3.0 0.0 MaM

oL

[

Freguency

H|OfE] 2% X7

E\l

I
(a) Megatively skewed

hMocde

X

=0 oS
L 913, Auzte 28

(b} Mormal {no skew)

Mean
Madian

Mol

https://goo.gl/i8iuL9
{c) Positively skewed

hMode

A

e

MNegative Direction

Perfectly Symmetrical
Distribution

—

Positive Direction

H|O[E{ 7t X} 271

0 70.0
dtype: floatéd

ix — o' column?| #2] Bxr= LHA X7
X — E:Eglfﬁi df["preTestScore”] .mean |
n 3.0
- = €22 HEMS I S0 Xt &
L (n—1 df tTestsS "1 .medi
6, 7, 8, 9 (-) ["postTestScore”].median
66.0
- 78 0| L= &
3, 3, 4, 4, 3 df["pnstTestScnre"].mnde{}|

Data Fill

df.fillnal0} C|O|E{Z} Qi =2 022 £ o202}

first name |last name | age |sex |preTestScore | postTestScore |location
0|Jason Miller 420|m |40 25.0 0.0
110 0 0.0 |0 0.0 0.0 0.0
2| Tina Al 36.0|f 0.0 0.0 0.0
% | Jake Milner 240(m |20 62.0 0.0
4 | Amy Cooze 73.0|f 3.0 70.0 0.0

df ["preTestscore"] . fillnaldf ["preTestScore”] .nean(), inplace=True)

daf preTestScorel| xS T 020z}
first_name |last name |age |sex |preTestScore | postTestScore |location

0| Jason Miller 42.0|m 4.0 25.0 MNaM

1| NaN MNaM MNaMN | NaN | 3.0 NaN NaMN

2| Tina Al 36.0 |f 3.0 NaN NaM

% | Jake Milner 240 (m 2.0 62.0 NaMN

41 Amy Cooze 73.0(f 3.0 70.0 MNaN

df ["post TestScore”] . fil Ina(df. groupby(" sex") ["post Test Score"] . transform("mean”],

Data Fill

i MEE URM "2 e o Yoizt
first_name |last_name |age |sex |preTestScore | postTestScore |location
0| Jason IMiller 42.0|m 4.0 25.0 MNaN
1| NaN NaM MNaMN |NaN (3.0 MNaM MNaM
2| Tina Al 36.0 (T 3.0 70.0 NaMN
9 | Jake Milner 24.0 (m 2.0 62.0 NaM
4 | Amy Cooze 73.0|f 3.0 70.0 NaM

df [df ["age'] . notnul 1) & of ["sex'] notnul 1]

Age?l sexZt 25 notnull®! Z 202t EA|sl2}

first_name | last_name [age |seX |preTestScore | postTestScore | location
0 | Jason Miller 42.0|m |4.0 25.0 MNaMN
2 | Tina Al 36.0|f1 3.0 70.0 MNaMN
3 | Jake Milner 240|m |20 62.0 NaM
4| Amy Cooze 73.0|f 3.0 70.0 NaM

inplace=True)

Missing Value Handling

df .isnull().sum() pd.options.display.float_format = '{:.2f}%'.format
df .isnull().sum() / len(df) * 100

Ezfzzggerld 8 Passenger | d 0.00%
Pclass 0.00%

Name 0 Name 0.00%

SeX 0 Sex 0.00%

Age 263 Age 20.09%

SibSp 0 SibSp 0.00%

Parch 0 Parch 0.00%

Ticket 0 Ticket 0.00%

Fare 1 Fare 0.08%

Cabin 1014 cabin 77.46%

Embar ked > Embarked 0.15%

dtype: int64 dtype: float64

Category Data

O]+ CIIO|E{ S OB A X 2|&7t?

{Green, Blue, Yellow}

O|4td HIO|E & B A X272
One-Hot Encoding
{Green, Blue, Yellow} CjojE| &g

{Green} = [1, 0, 0]
{Green} = [1, 0, O]
{blue} = [0, 1, 0]

AH HO|E sete] 7|7t
Binary FeatureE 4/d

Data type

import pandas as pd
import numpy as np

edges = pd.DataFrame({ source': [0, 1, 2],
'‘target': [2, 2, 3],
'‘weight': [3, 4, 5],
‘color': ['red', 'blue', 'blue']})

edges]"source" Data2| type = int64

0 0
1 1
2 2
Mame: source, diype:. integd

edges["color"]

(0 red
1 blue o — i
> brue Data?| type = object

Mame: color, dtype. object

One Hot Encoding

pd. get_dumnies edges)|

source |target | weight | color_blue | color_red

00 2 3 0 1
101 2 4 1 0
2|2 3 5 1 0

pd.get_dummies{edges|"color"])

blue red
0|0 1
11 0
21 0

pd. get_dummies{edges[["color"]])

color_blue | color_red

00 1

101 0

2|1 0

One Hot Encoding

weight_dict = {3:"M", 4:"L", 5:"HL"}
edges["weight_sign"] = ledges["weicht"] map{weight_dict)

eages Ordinary data - One Hot Encoding
color |source |target | weight | weight_sign

Olred |0 2 3 Y

1 |blue |1 2 4 L

2 |blue |2 3 5 XL

edges = pd.get_dummies(edges)
edges . as_matrixi)

i
0],
111, dtvpe=int&4)

H|O|E{2] 1t LT 2 A}

Data Binning!

« Data:0.4, 12, 16,16, 18, 24, 26, 28
* Equal width

— Bin1: 0_4 -, 10)
—gin2:12_ 16,16, 18 10.20)
— Bin3: 24 26 28 20,+)

* Equal frequency
—gin1: 0.4, 12 -, 14)
— Bin2: 16_ 16,18 14, 21)
— Bin3: 24, 26 28 21,+)

Data

binning

Example from — hitps!//chr isalbon. com/pyithon/pandas_binning data. himl

raw_data = {'regiment 0 ['Nighthawks', 'Nighthawks', '‘Nighthawks', 'Nighthawks', 'Dragoons', 'Oragoons', 'Dragoons', 'Dragoons', 'Scouts',

‘company': ['1st', “ist', ‘'znd', 'end', ‘1st', “ist', 'end', 'end', ‘ist', ist', ‘end', 'end'],
‘rame s [Miller', "Jacobson', ALY, 'Milner', 'Cooze', 'Jacon', 'Ryaner', 'Sone', 'Sloan', 'Piger', 'Riani', 'Ali'],

‘oreTestScore': [4, 24, 31, 2, 3, 4, 24, 31, 2, 3, 2, 3],

‘mostTestScore' : [20, 94, OF, B2, 70, 20, 94, 57, B2, 70, B2, 701}
= pd.DataFrame (raw_data, columns = ['regiment', 'company', 'name’, 'prefestScore’, 'postTestScore'])

df
df
regiment |company |nhame preTestScoref postlestScore

0 | Nighthawks | 1st Miller 4
1 |Nighthawks | 1st Jacaobson | 24
2 |Nighthawks | 2nd Ali 31
3 | Nighthawks | 2nd Milner 2
4 |Dragoons |1st Cooze 3
5 |Dragoons |1st Jacon 4
6 |Dragoons |2nd Ryaner |24
7 |Dragoons |2nd Sone 31
8 |Scouts 1st Sloan 2
9 |Scouts 1st Piger 3
10 | Scouts 2nd Riani 2
11 | Scouts 2nd Ali 3

Ho[E{e] FZtS LIE

'q

J

-

7 Data binning

bing = [0, 25, B0, 7o, 100] # Define bins as O to 25, 25 to 50, 60 to 75, 75 to 10
group_names = ['Low', 'Okay', 'Good', 'Great'] '51215§
categories = pd.cut (df['postTestScore'], bins, labels=group names)

categories Cut ¥ categoriesOfl &

Lo
Great
Good
Good
GO0
Lo
Great
Good
Elalsle
Good
10 Good
11 GO0
Mame: postTestScore, divpe: category
Categories (4, object): [Low < Okay < Good < Great]

5 20] D O = DO D — T

df ['categories'] = pd.cut (df ['postTestScore'], bins,

Data binning

pd.value_counts{df['categories'])

labe | s=group_names)

7|= dataframe0]| %t

Good 5
Great 2
Low 2
Okeay 0
Name: categories, dtype: int6d
df

regiment |company |name preTestScore | postTestScore | categories
0 |Nighthawks | 1st Miller 4 25 Low
1 |Nighthawks | 1st Jacobson | 24 94 Great
2 | Nighthawks | 2nd Ali 31 57 Good
3 |Nighthawks | 2nd Milner 2 62 Good
4 |Dragoons |1st Cooze 3 70 Good
5 |Dragoons |1st Jacon 4 25 Low
6 |Dragoons |2nd Ryaner |24 94 Great
7 |Dragoons |2nd Sone 31 57 Good
8 |Scouts 1st Sloan 2 62 Good
9 |Scouts 1st Piger 3 70 Good
10 | Scouts 2nd Riani 2 62 Good
11 | Scouts 2nd Ali 3 70 Good

Label encoding by sklearn
- Scikit-learnQ| preprocessing 7| X| = label, one-hot X| &

raw_example = df.as matrix()
raw_example[:3]

array([['Nighthawks', 'lst', 'Miller', 4, 25, 'Low'],
['Nighthawks', 'lst', 'Jacobson', 24, 94, 'Great'],
['Nighthawks', '2nd’', 'Ali', 31, 57, 'Good']], dtype=object)

data = raw example.copy()

Label encoding by sklearn

- Scikit-learn2| preprocessing Il 7| X| = label, one-hot X| &

from sklearn import preprocessing AH A
le = prePrmcessing.LahelEncnder{)/'EnCOder = (=

le.fit(raw_example[:,0])— — Data0f| 7| encoding fitting
le.transform(raw _example[: ,0].)\%}" 4|0|E| > Iabelling data

array([1, 1, 1, 1, 0, O, O, O, 2, 2, 2, 2])

Label encoding by sklearn

- Label encoder?| fitd} transform®| 1}’30| L}l Ol /F=

- MZ22 Hlo|E| Y=HA|, 7|= labelling 32 ACHZ M8
Za7t g

- Fit 2 FAE WAsE IHH

- Transform2 &S HE8ol= 1}

- Fit2 8ol #%10] M E labelencoder= 2 X %6104

- ME2 HIO|EZ =Y ZF A8 = U=

- Encoder== AHN| A|AHIN ALEE BF picklezl E2

label column = [0,1,2,5]

label enconder list = []

for column index in label column:
le = preprocessing.LabelEncoder()
le.fit(raw example[:,column index])

data[:,column index] = le.transform(raw example[:,column index])

label_encﬂnder_list.append{lej\\\

del le 7| = label encoders L2 X%
data[:3]

array([[1, O, 4, 4, 25, 2],
[1, 0, 2, 24, 94, 1],
(1, 1, 0, 31, 57, 0]], dtype=object)

label enconder list[0].transform(raw example[:10,0])

array([1, 1, 1, 1, 0, 0, 0, 0, 2, 2V MZ =l [e2 MEZ2 HO|E{0] M

One-hot encoding by sklearn

- Numeric labelling0| 2t2El H|0|E{0f| one-hot &
- HIO|E{£ 1-dim O & HEslof Ho| & HS HE

one hot enc = preprocessing.OneHotEncoder()
one hot enc.fit(dataf :|, 0].reshape(-1,1)) 1-dim ﬁ§|-'5|.0:| fit
| =

onehotlabels = one hot enc.transform(data[:,0].reshape(-1,1)).toarray()

onehotlabels 1-dim ¥H2t< transform > ndarray
array ([-1

-1,
-1
-1,

0
0
0.
0
1 -1,

= I N L
"« @& @& & B
oo O OO

[
[
[
[
[

- b | - - b |
- - - - -

What we did

- Category data encoding — one-hot encoding
- Missing value handling

- Data drop

- Log transformation

- Data binning

Data
/ Cleansing \

Feature Exploratory

Engineering Data Analysis

What we will do

- Encoding Families

- Feature Interactions
- Scaling

- Feature Selection

- Data binning

Feature
Engineering

Feature

Feature Engineering

7V HE B4 RE X

Feature engineering

Generation Selection
- Binarization, Quantization |- Univariate statics
- Scaling (normalization) - Model-based selection
- Interaction features - lterative feature selection

- Log transformation - Feature removal

Log transformations

- HIO|E{e| 2x7} FTHX o2 RS i(poisson)

. ME e Hlo|E 7t YREE X
. o . Long-tail graph
- Poisson = Normal distribution

- 2791 FL2E, XE BN, 2N Tof, 174

- np.log or np.exp S2| E+E Al

Log transformations

GET SPECIFIC AND GET FOUND

Millions

TOP 100 KEYWORDS
100Ks

THETOP10,000
KEYWORDS MAKE UP
LESSTHAN 209% OF
OVERALL SEARCH
TRAFFIC. 700 COMES
FROM LONG TAIL

v
d
X
b= 0P 500 KEYWORDS EYW
43% of Amazon's Sales s F R ORES K DRDS’ HIGHLY
e SPECIFIC 4-6 WORD
Books carried g 10Ks TOP 1K KEYWORDS
by traditional apl PH RASES
skares = TOP 10K KEYWORDS
=] Thousands
=
L
o
57% of Amazon's Sales = Hundreds
Books only carried by Amazon Tens
<5
18.5% 11.5% 10*
FATHEAD CHUNKY MIDDLE LONG TAIL

OF KEYWORDS

400

300 -

200 -

100 -

1000 1
800 -
600
400 -
200

Log transformations

SibSp

Age

20

Patth

B0

800 -

GO0

400

200 4

1000 -
800 -
GO0 4
400
200 -

Fate

fig = plt.fiqurel()
fig.set_size_inches(10, 5)

ax = ||
colors = ['b', 'g', e, 'm', 'y, k']
for 1, col_name in enumerate(numeric_columns):
ax.append(fig.add_subplot(2,2,1i+1))
X_1 = np.log108(one_hot_df|[col_name]+0.5)

ax|i].hist(X_1)
ax|i]|.set_title(col_name)

Log transformations

Age SibSp
EJ:I{I 1 mn i
-q-l:":' | Eﬂﬂ 7
400 -
200 -
200 -
0 0 A
0.0 05 parch0 15 20 0 uzFarF_nq 06 08
1000 - c00
800 -
400 -
600 -
400 + 200 A
200 A
; o wm |

0.2 00 02 0.4 0.6 0.8 10 0.0

Mean encoding

- Category H|O|E{= &4 One-hot Encoding?
> X, CieFst Q13T 7|80 /US

- &5l o= YZAO'" st 225 &8¢t
Mean EncodingO| A&

- Label

Mean encoding

IR =2 1 XM= BE7I EXoIX| 55

id job

job_label

target

1 Doctor
2 Doctor
3 Doctor
4 Doctor
5 Teacher
6 Teacher
7 Engineer
8 Engineer
9 Waiter
10 Driver

o W W NN e e

=T I e = B e e e B e s B e

2,5

1,5

0,5

’ i I , I i I T I
1 2 3 4 5

B Class0

BClass1

Mean encodin

(e

— - rey O
- Mean 213 B2EO| ZI2 F T £+ QS
id job job_mean target 33
1 Doctor 0,50 1 9
2 Doctor 0,50 0
3 Doctor 0,50 1 |7
4 Doctor 0,50 0 2 p s
5 Teacher 1 1 15 o Clace 1
6 Teacher 1 1
7 Engineer 0,50 0 :
8 Engineer 0,50 1 05 -
9 Waiter 1 1 .
10 Driver 0 0) 05 1

Mean encoding

Pclass
temp_df = pd.merge(1 0 B3
one_hot_df| |, y_true, > 0'4?
left_index=True, right_index=True) '
3 0.24

temp_df.groupby() [| .mean()

MName: sSurvived, dtype: floatbd

0 0.24
temp_df| | .replace(1 0 B3
temp_df.groupby() P 0.24
3 0.63
4 0.24
886 0.47
ge7 0.63
888 0.24
889 0.63
890 0.24
Mame: Pclass, Length: 891, diype: floatbd

Pclass_1 -ﬂ 29 0. EE..
e Tl o+ 09 B T
5 1].14 0.63 -{J.ET.- Rk 0 32
Embarked_C AL v (.3 L.78 v
. B
Embarked_3S ..l ki 078 0.9 .

L LR I

—-0.38

survived

Pclass 1

Pclass 2

Pclass_3

e Illl
Cad)

=ex male
Embarked 5

ik}
m
=
£
=
i

Embarked C
Embarked Q

Mean encoding

- “

me Sex

- 0.13

o 0.13 0.19 0.34

m

[

I:I'I

E

= 0.096 0.19 0.17 - 04
=

m

|

E

o -0.2
E

= o 034 017

E me_Sex me_Pclass me_Embarked Survived

@

Mean encoding

=3 o e, 23 o UL 450 4o E #

Test, One hot enceding

q — mean encoding — Test, Label encoding
O 65 e 8 34 —— Test, Frequency encoding
* N ———— Iabel enCOdlng Test, Mean encading, alpha=0
Test, Mean encoding, alpha=2
O 60 N i3 —— Test, Mean encoding, alpha=5%

Test, Mean encading, alpha=5, 4 folds
Test, Mean encoding, alpha=5, 7 folds
—— Test, Mean encoding, alpha=>5, expanding mean

0.55

0.50

loss

0.45
0.40

0.35

1 2 3 = 5

27

tree depth 0 50 100 150 200 250 300 350 400

Mean encoding
- Regression Task= the 402 1

label, =

https://www.kaggle.com/vprokopev/mean-likelihood-encodings-a-comprehensive-study

https://www.kaggle.com/vprokopev/mean-likelihood-encodings-a-comprehensive-study

Mean encoding

- Overfitting= | AH5t7| 2/5H smoothingS AFEE

(pc k ’nc —|— pglobal k C\f) def calc_smooth_mean(df, by, on, m):

label, =

(’nC -+ CX) mean = df[on].mean()

agg = df.groupby(by)[on].agg(|
counts = agg]]
means = agg|]

smooth = (counts * means + m * mean) / (counts + m)

return df[by].map(smooth)

https://www.kaggle.com/vprokopev/mean-likelihood-encodings-a-comprehensive-study

https://www.kaggle.com/vprokopev/mean-likelihood-encodings-a-comprehensive-study

Mean encoding

0|2]0f| = B2 Encoding 7|"™H&0| Exlgt

© Encoding Methods

e Backward Difference Contrast [2][3]
¢ BaseN [6]

* Binary [5]

e Count [10]

* Hashing [1]

e Helmert Contrast [2][3]

¢ James-Stein Estimator [9]
e |eaveOneOut [4]

* M-estimator [7]

¢ Ordinal [2][3]

¢ One-Hot [2][3]

¢ Polynomial Contrast [2][3]

https://github.com/scikit-learn-contrib/categorical-
e Target Encoding [7] encoding?fbclid=IwAR3b4X2XUuMJWuHOLxTs9Hf4rAzHe
* Weight of Evidence [8] S6W‘Q3DegG1 kuZwh KhZe_leznG nvM

e Sum Contrast [2][3]

https://github.com/scikit-learn-contrib/categorical-encoding?fbclid=IwAR3b4X2XUuMJWuH0LxTs9Hf4rAzHeS6W-q3DegG1kuZwhKhZejTmznG_nvM

Interaction features

- 7| & featureS2| T2 MZ L featureS MM
- DataOj| Clj'et A}H X| A3} O|slj7 2
- Polynomial featureg A%t X133} 75 > =2 H|E

sklearn.preprocessing.PolynomialFeatures

- ME¥o=z WIY 2452 U8 S XH5H IE 58

=
- weight + time-period, sensor1 + sensor2

http://scikit-learn.org/stable/modules/classes.html#module-sklearn.preprocessing

Interaction features

Housing price prediction.

400

300

Price (S)

in 1000’s £He

100

500

1000 1500
Size in feet?

2000

2500

Interaction features

- Category Combination

Survived = 0.0 Survived = 1.0
300

250
200

150

count

100

ﬁ” I i
ﬂ a1) 2 B
S C O 3 C

L]
Embarked Embarked

Il

I:.-l-'lr“~.1—"ﬂ

Interaction features

temp_columns = | ,
one_hot_df]|] =

df| | .map(str)+df]| 1
one_hot_df|] =
df | | .map(str)+df]|

.map(str)

| .map(str)

SexPclass_female1

SexPclass_female2

SexPclass_female3

SexPclass_male1

SexPclass_male2

SexPclass_male3

EmbarkedPclass_C1

EmbarkedPclass_C2

EmbarkedPclass_C3

EmbarkedPclass_0Q1

EmbarkedPclass_Q2

EmbarkedPclass_Q3

EmbarkedPclass_S1

EmbarkedPclass_S2

EmbarkedPclass_S3

Survived

Interaction features

-

01
0.15 0.13
0.14 0.12
013 011
0.27 0.24

0.099
0.048 016
0.097 -0.088
0061 £0.014

012

0.091

0.55

SexPclass_female1 [ﬁ f S (=1 g
@ @ © - &}

SexPclass_female2

0.15

-0.061

0.14

-0.021

-0.026

0.24

=1
3

SexPclass_female3

0.14 0.13 027 -
0.12 0.1 024 -0.089
017 0.16 035 0.14
0.15 032
0.15 0.3 £z
-0.32 0.3 -0.26
£0.12 026 1
-0.056 02 011 0.045
0.11 0.1 015 -0.092
0.05 0.018 -0.038 0.015
-0.023 0.038 -0.046 £0.019
£0.12 0.1 0.093 0.086
0.57 0.15 033 0.13

0.19

£0.32

0012 017 041 o021
- o L) -
@ o n o
m o] [} |
£ £ E @
l‘,‘I w\ l‘,"I T’z
& & @ [
il o il B
o o o E
= - = 5
& B & E

0.048

0.16

0.061

-0.056

02

0.045

-0.039

-0.0066

-0.0081

0.041

0.057

0.066

0.042

_c2 2

EmbarkedPclass.

-0.087

-0.086

014

015

0.092

-0.039

0.013

0.016

-0.0029

EmbarkedPclass_C3

0.061

-0.014

0.021

0.05

£0.018

-0.038

£0.015

0.0066

£0.013

0.0028

0.014

-0.023

-0.038

=
=)
3

EmbarkedPclass_Q1

0.12

-0.026

-0.023

0038

-0.046

£0.019

0.0081

0.016

-0.0028

£.017

-0.024

-0.028

0.047

=)
[=]
b

EmbarkedPclass_Q2

“

0.091

024

0.093

0.098

£0.041

£0.014

0017

024

-0.0054

Q3

EmbarkedPclass

057

0.057

-0.024

o

EmbarkedPclass_S51 =

3

-0.16

0.55

-0.066

0.023

-0.028

0.ors

_s2

EmbarkedPclass

019

0.038

0.047

&
w
[}

EmbarkedPclass_S3

01
0.75
0.012
0.50
021
0.042
-0.0029 —0.25
0.011
0.034
—0.00
-0.0054
oar
0.078
—--0.25
032

Survived

Interaction features

from sklearn.preprocessing import PolynomialFeatures
poly_features = PolynomialFeatures(degree=2)
X_poly = pd.DataFrame(

poly_features.fit_transform(
log_bin_one_hot_df|[numeric_columns]))

1.0
121
0.6
04
0
-00

- pafIAIng
||] [l Hl -
HE N . Hl EEE -
HE HE SN HENEEE -
] | &
| ETEE Bl -
. HENE EEEEEE EEm -
] HNEN EEEEETEE “

-
L]

ENENEE EE
HEER EEEEEEEEE
HNENE o
N HEE -
]]
AN EEE ENEEEE »
L[s
[l H & BN B FEE -
HEEEE "EN EEEEE HEENEEN -
H N EHN HE EE @

HEE N EEEEEE Owm -
[| T ||| | o

8 8 § 8 3 8 8

Interaction features

S~ e oMo m @ e @ @

o L 2 € ¢ & 9 L & & 0O W Z £ ¥l S 9 L 8 6 0€ & I € P G W M 9 62 0 £ I £ v pavung

- Feature 7|2| &5}7|
-9 & E|l=X| n2

- T 0|91 X|Al 1} EDAR £2 FeatureS= M6

EtC

&ot/|, LH+71 S

oo
=0 & =l= 3771 ™

- O T

Feature Selection

71 AEs BAE Mushs W

Feature engineering

Generation Selection
- Binarization, Quantization |- Univariate feature selection
- Scaling (normalization) - Model-based selection
- Interaction features - lterative feature selection
- Log transformation - Feature removal

- Dimension reduction

- Clustering

Feature selection

- D E feature 0| HIEA| model S50 €1 X| Q=
- O™ featureE2 M5 g 26|28 LA &

- {2 B2 feature > overfitting2| & Q!

- BElof [m2tA 2 ot featureES MEHS

- WO AL feature M7 S &S £} M SEAH

- CfFsH 7|1 [E0f CHsl S5

Univariate feature selection

- E7| nElg 7|80 2 St x| X 9| featureS MEH
- Chi square, F-test, ANOVA S2| E4| 222 A}

=
- YZX 3} SILEO| featureZt2| EA|X |2|0|E &
- FE MY RE M F-ESHA ALEE =

=
- 2 A| At S = Q= feature selection 7|

SelectKBest

sklearn.feature selection.SelectKBestq

class sklearn.feature selection. SelectKBest (score_func=<function f_classif>, k=10) [source]

>>> from sklearn.datasets import load_iris

>>> from sklearn.feature_selection import SelectKBest
>>> from sklearn.feature_selection import chi2

>>> 1ris = load_1iris()

>>> X, Yy = 1ris.data, 1iris.target

>>> X.shape

(150, 4)

>>> X_new = SelectKBest(chiZ2, k=2).fit_transform(X, y)
>>> X_new. shape

(150, 2)

SelectKBest

SelectKBest SelectPercentile
For regression: f regression, mutual info regression
For classification: chi2, f classif mutual info classif

http://scikit-
learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html

http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html#sklearn.feature_selection.SelectKBest
http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectPercentile.html#sklearn.feature_selection.SelectPercentile
http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.f_regression.html#sklearn.feature_selection.f_regression
http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_regression.html#sklearn.feature_selection.mutual_info_regression
http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.chi2.html#sklearn.feature_selection.chi2
http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.f_classif.html#sklearn.feature_selection.f_classif
http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_classif.html#sklearn.feature_selection.mutual_info_classif

f _classif

ANOVA F-value between |label/feature for classification tasks.

mutual info classif

Mutual information for a discrete target.

chi2
Chi-squared stats of non-negative features for classification tasks.

f regression

F-value between labelfeature for regression tasks.

mutual info regression

Mutual information for a continuous target.

SelectPercentile
Select features based on percentile of the highest scores.

SelectFpr
Select features based on a false positive rate test.

SelectFdr
Select features based on an estimated false discovery rate.

SelectFwe
Select features based on family-wise error rate.

GenericUnivariateSelect
Univariate feature selector with configurable mode.

Model based feature selection

- HR RES2 ots 1PH0|A] ATt featureE A=
- L1 penalty, Tree-based model
- Feature importance= 7|H9t2 £ St feature £1E40| 7}
- CHE BEI9| feature MEHO| MK 2| CHA|E 2L 7=
SHHO|| 2= featureS 12T > A7t 57t S5 4
=)

o
- Tree-based ensemble A|E82 0|T £%=0| o|O] &)

sklearn.feature selection.SelectFromModel

class sklearn.feature selection. SelectFromModel (esfimator, threshold=None, prefit=False, norm_order=1)
[source]

Meta-transformer for selecting features based on importance weights.

select = SelectFromModel (estimator=RandomForestRegressor(n_estimators=100), threshold="median")

select.fit(X train, y train)

transform training set
X train selected = select.transform(X train)

Iterative Feature Selection

- HI2 MO 2 featurel| £ =A™ > %|H feature A1EH
- 17 H 9 n7 H , EEE n7 H 9 17 H (Recursive Feature Elimination, RFE)
-0 =2 AlLHH|E, 85 BH

- 2| 2 O] stepwise selection 7| 0| =X scikit-leam x)
- Tree A€ 2HZ A2 feature importanceE Al

- GIO|E{2] contextE 25 [ff, AFESI7| 0|

Recursive Feature Elimination

sklearn. feature_selection.RFE

Parameters: estimator : object

A supervised learning estimator with a fit method that provides information about
feature importance either through a coef_ attribute or through a feature_importances_

attribute.
n_features_to_select : int or None (default=None)

The number of features to select. If None, half of the features are selected.

step : int or float, optional (default=1)

If greater than or equal to 1, then step corresponds to the (integer) number of features to
remove at each iteration. If within (0.0, 1.0), then step corresponds to the percentage

(rounded down) of features to remove at each iteration.

verbose : int, default=0

Controls verbosity of output.

feature MEHO| F9O| Al

- prediction timeOl|c = T Y= feature Q17|72

- HAIZHO|F0| Eog mf, 4/80| L5 1H[E0] o}l 7|2
71?7 EE= H|EHo 2 59 7ot/
category data=? 7}% H|=got Zi?

S Ol ca
- &2 2CtXOl B3 5 threshold 7|HH2 2 binarization

Ot

- scale2 XA

r

feature MEHO| F9O| Al

- prediction timeOl|c = T Y= feature Q17|72

- HAIZHO|F0| Eog mf, 4/80| L5 1H[E0] o}l 7|2
71?7 EE= H|EHo 2 59 7ot/
category data=? 7}% H|=got Zi?

S Ol ca
- &2 2CtXOl B3 5 threshold 7|HH2 2 binarization

Ot

- scale2 XA

r

O| & FeatureS 2 AMN|SHXH

- Correlation 0| L|F =2 Feature= AHA|
- MK 2|7} QLR El str feature=

- IDe} &2 Mok= 71Xl Feature &

Feature scaling

| —

+ H
= O
o T

S otLtel &2l 37|71 1+

FAHLE 7171 HaM, 717 SE=

Feature scaling

Feature?t2| Z|CH-Z|A 42| XIO| & S

¥
I

Yy = B1x1 + Bax1 + 0

61 min| |max

62 miin| | max

e

Feature scaling 1=}

- Min-Max Normalization
7|1 E HA0| HE ML Hrf-2| A2 HY
Ut o= 0uf 1 AlO| f2 = HZAT

| NI
(@) min

T = (new_max — new_low) + new_low
Lmazr — Lmin

|2~ 12,000 / Z|Clf 98,000 > 7|E 4% 73,600

Feature scaling &}

Standardization (Z-score Normalization)
|E Hp0f| HRSE Bt X2 HE
A Mix-Max?8| 2= 2§ Ifj 87}

. (i) _
(0 _TV—u

std_norm S

o 54,000 / =X} 16,000 > 73,600

A AFEE = HIEA]
‘d1t2t Parameter(Z|CH/ZE| A, B+ /8 FH KX}

71951 M=z=2 20 H-&olfofgt

Min-Max Normalization

(D)

— Lmin

Lmazr — Lmin

(new_max — new_low) + new_low

(df["A"] - Af["A"].min())
/ (df["A"].max() - df["A"].min()) * (5 - 1) + 1

A

C

B W N - O

14.00

90.20

90.95

96.27

91.21

103.02

107.26

110.35

114.23

114.68

big
small
big
small

small

A

Z-Score Normalization

BEL"B"]

X

(i) — p

std_norm S,

(dE[' B"] - df["B"].mean())

/ (df["B"].std())

C

14.00

90.20

90.95

96.27

91.21

103.02

107.26

110.35

114.23

114.68

big
small
big
small

small

\

Feature Scaling Function

def feture scaling(df, scaling strategy="min-max", column=None):

if column == None:
column = [column name for column name in df.columns]
for column name in column:
if scaling strategy == "min-max":
df [column name] = (df[column name] - df[column name].min()) /
(df[column name].max() - df[column name].min())
elif scaling strategy == "z-score":
df[column name] = (df[column name] - \
df [column name].mean()) /\

(df [column_name].std())
return df

Feature scaling with sklearn

- Label encoder®} O%F7}X| 2. sklearnk. feature scale X| ¥
- MinMaxScaler2}l StandardScaler Al

from sklearn import preprocessing

std scale = preprocessing.StandardScaler().fit(
df[['Alcohol’', 'Malic acid']])
df std = std scale.transform(df[['Alcohol’, 'Malic acid']])

df std[:5
array([[1.51861254, -0.5622498 |,

 0.24628963, -0.49941338],
 0.19687903, 0.02123125],

Feature scaling with sklearn

- Preprocessing= 25 fit > transform?| 1’5 AHH
- O|f= label encoder?} &
- Tk scaler= 2HHO| 2] columnE X|E| 7t

minmax scale = preprocessing.MinMaxScaler().fit(df[['Alcohol’', 'Malic acid']])

df minmax = minmax scale.transform(df[['Alcohol’', 'Malic acid']])
df minmax|:3

array([[0.84210526, 0.1916996],
[0.57105263, 0.2055336],
[0.56052632, 0.3201581]])

Alcohol and Malic Acid content of the wine dataset

@ input scale
Standardized
min-max scaled [min=0, max=1]

-
=
o
=
=

Alcohol

=
=
u
o
=

Input scale

@ Class1
@ Class 2
@ Class 3

Malic Acid

Standardized

| @ Class1 o
® Class?2 @ ¢
@ Class3 [] o |®
® . .
® e @ ™ '-
® L e @ @ % .‘
& . @
™
‘.. - [] '..
.- ® o® .. o |
o o o | o
.“ : %, ® ° 3
o° oo &, .'.% g
¢ o ® %% "y o o :
..i. ® ® e
r
-2 -1 1] 1

Malic Acid

min-max scaled [min=0, max=1]

1
104+ @ Class1 & -
@ Class 2 [
@ Class 3]
0.8 “
i hd ® ®
e e @ 8 ® o
®
06 * ®s ® , '.
®
@ ®
® % S L, @
s °.° @ #eo
o4 9) e ® ° s o
@
* %) @
0.2 ’i'o‘ o
@ ® e @
® ate ® ®
® "‘ b
@
e @ ® o
0.0 L
0.0 02 04 06 0.8 10
Alcohal

Model & Trainning

| O|E{ numpy2 HEt

X_train = all_df/| :number_of_train_dataset].values
X_test = all_df|[number_of_train_dataset:]|.values

y_train = y_true.copy()

from sklearn.ensemble import RandomForestClassifier

clf = RandomForestClassifier(
n_estimators=160, max_depth=206, random_state=0)

clf.fit(X_train, y_train)

y_pre = clf.predict(X_test)

Data Split

Classification:
(1.00) Dog
(0.00) Cat

ﬂﬂla
78
e

NS
LGB
&Fiw
- .amxﬁ
i)

Overfitting
MLOIIA 2l EIO|E{0ll 2 SHHM RHE MY

Overfitting

St 0ol & uict = =3} > M=2 HI0jE|2] o= |

A

Underfitting

>

Just right

A

'_\NJ\,

>

Overfitting

https://goo.gl/aP8iFa

=EH H0|E = & LI M BIISHRH
A H|0|E 7} Ml&E MHITH 2 S5 =S

Training Set

Model Performance
Generation Metrics

Data Set

Holdout Method (Sampling)

- 0| & Trainingd} Test} LI A RES ‘d/dot HAESH= 7|
- 71 Lt ol m el M-S st ojoje MEH MET 7™
- Training} TestE L+ H|&2 CI0|E 2| A 7|0 2} C}=

import numpy as np
from sklearn.model_selection import train_test_split

X, v = np.arange(10).reshape((5, 2)), range(5)

X_train, X_test, y_train, y_test = train_test_split(
X, vy, test _size=0.33, random_state=42)

Training - Validation - Test

Training Validation Test

Model Model Model
Building Check Evaluation

Validation Set

- Test Set2 ModelO| MM Al HLCH Training Setd]| ZEgtk|X| 2totof gt

- Test Setd} & 2| Model Al Modeldll 452 E71517| /6K AHE
- Hyper Parameter Turning Al ‘ds 87}= Soll Overfitting & X]

- Training SZH| Model?] 452 A

Training Validation Test
Set Set Set

Original set l

Training set Test set

Training set Validation set Test set

Training, tuning, and

evaluation m

Machine learning
algorithm

Predictive Model &
E— Final performance estimate

From: Python Machine Learning, https://goo.gl/JR9vxM

K-fold cross validation
-5t OI0|E{E KHH LHR| A Test®} TrainS AA| © TestQ] WA 2 Al
C =

=
- BEIO| parameter F i, ZIEtol DEIO| XS M5 S S Al

Training Set Validation Set

Validation Set

Validation Set

Validation Set

K-fold Cross Validation

from sklearn.mﬂdel_selectiﬂn imEurt EFold

kf =

KFold(n_splits=10, shuffle=True)

for train_index, test_index in kf.split(X):

print("TRAIN - ", train index[:10])
print("TEST - ", test index[:10])
TRAIN - [0 12345678 9]
TEST - [16 22 24 25 28 5B 60 79
TRAIN - [0 12345678 9]
TEST - [23 30 33 56 66 6% 72 73
TRAIN - [0 1 2 3 4 5 6 7 9 10]
TEST - [8 12 3% 41 61 78 96 97
TRAIN - [0 1 2 3 4 6 7 8 9 10]
TEST - [5 15 31 38 46 85 91 45
TRAIN - [0 12345678 9]
TEST - [18 37 40 43 55 57 75 77

FAT:™AW T 17

r b |

i | i | A

=

. -] 1 M

1 1 1

92

74

100

116

S0

110]
107]
112]
124]

104]

Leave One Out (LOO)

- Simple cross validation = k = data size
- SteHof| of 7 o] | O] E{ 2t Test set2 2 At > & kHH iteration

- total samples -

iteration 1/N:

iteration 2/N:

iteration 3/N:

iteration N/N:

https://www.researchgate.net/profile/Nikolaos_Chlis/publication/266617511/figure/fig
11/AS:295705362092036@1447513060277/Leave-One-Out-Cross-Validation.png

Etc...

- RepatedKFold - 50| ZghEl K-Fold ‘4-d

- LeavePOut - StEHOj| P7Z &2 (Not LOO for one data)
- ShuffleSplit - S & H (= k|=) H0|E Sampling

- StratifiedKFold — Y 2} H| 0] [z} E&

- GroupKFold - AEE £ H|0|E{ & Sampling

Cross validation
Train-Validation-Test

oy [
]

Imbalanced dataset

Xl dataset
X} 0= dataset

TOjst F%2| dataset

t710| £

2l =] dataset

B 59| dataset= imbalanced dataset

How to handle imbalanced dataset

- ™3t performance metricg 4% (accuracy X)
- precision, recall, AUCO| X%
- X H ot training dataset2| resampling
- oversampling, under sampling, data augmentation

- Ensemble

original
dataset

training
dataset

test
dataset

Dataset resampling

FALSE
FALSE .

Dataset resampling

- Imbalanced class’} &= 26| LC}IH

under sampling > FALSE H|O|E{& &

| — I~

- Imbalanced class’} £=o}C|H
over sampling > TRUE C|O|E{ & &&

imbalanced-learn

- scikit-learn?] imbalanced dataset 2% =

- under sampling, over sampling, SMOTE S H| &

https://github.com/scikit-learn-contrib/imbalanced-learn

pip Iinstall -U imbalanced-learn

conda install —c conda—-forge imbalanced—learn

Stratified sampling

original

dataset FALSE

training FALSE
dataset |

test FALSE
dataset

Imbalanced dataset handling process

MH| dataset¥|A] test2} dev set2 LHE (stratified)

dev set2 = under sampling EE= oversampling
EE"9-| AHkI

Test setQ & BHO| HS

Performance

Metrics

113 7|-o|- A OI E
Measure?Z} ‘_é'ﬂ

Regression metrics

- Mean Absolute Error
1 — 1 —
MAE = = = =
n;w Uil n;kﬁI

£EXFe| 2LiZX2] Sum

from sklearn.metrics import median_absolute_error
y_true = [3, -0.5, 2, 7]

y_pred = [2.5, 0.0, 2, 8]
median_absolute_error(y_true, y_pred)

Regression metrics

- Root Mean Squared Error (RMSE)

1 T
SE = , | — E i — Ui)?
RMSE \\/nlt:l(y Ui)

XK Hl22| suml| EE

from sklearn.metrics import mean_squared_error
y_true = [3, -0.5, 2, 7]

y_pred = [2.5, 0.0, 2, &]
mean_squared_error(y_true, y_pred)

Regression metrics

- R squared A
R2 — 1 > iy — yi)Q.
Zz(y’b — M)2
01} 1A}0] X2 3H & 58 52 ML E x|

from sklearn.metrics import r2_score
y_true = [3, -0.5, 2, 7]
y_pred = [2.5, 0.0, 2, 8]
rZ_score(y_true, y_pred)

AlA| Class CHH|
doiL & HSi=0

N PMA L

Confusion Matrix (=

ol

'@Eﬂ)

= =
_ AN Bpa) o X BbHo| UX| IHAE Matrix HEHE E
Prediction
1 0
1 True False
Actual Positive | Negative
Class 0 False True
Positive | Negative

Confusion Matrix (& a3

True Positive (TP)
- &M Za F@)ofl cHet ol =5 0] 5=

True — 0J|=0| St

Positive — &(1) ¢! 4% Fetual

Class

Prediction
1 0
True False
Positive Negative
False True
Positive Negative

Confusion Matrix (& a3

True Negative (TN)
- & 23t A (0)0ll et ol F0] B

Prediction
0| Oore 1 0
True - 0|=50| = T —
1 ue | False
Xl o] 740 Actual Positive | Negative
Negatlve 7-I > (O) - o Class 0 False True
Positive Negative

Confusion Matrix (& a3

False Positive (FP)

- 2 X 23F F)ofl chet oj=0] SE

False — 0J|=0| =&

—
Positive - & (1) ¢l A%

Actual
Class

Prediction
1 0
True False
Positive Negative
False True
Positive Negative

Confusion Matrix (& a3

False Negative (FN)
- X 21t AR (0)of ciet ol =50] FE

Prediction
1 0
False - 00| &
1 Tr.ug Falsg
- _ y OI 74 O Actual Positive Negative
Negatlve 7-I A(O) - OT Class O False True
Positive Negative

rloi

Confusion Matrix (

g d3)

True Positive (TP)
True Negative (TN)
False Positive (FP)

False Negative (FN)

sklearn.metrics.confusion matrix

sklearn.metrics. confusion_matrix (y_frue, y _pred, labels=None, sample_weight=None) ¥ [source]

from sklearn.metrics import confusion matrix

y_true = [1, O, 1, 1, O, 1] Prediction
y_pred = [0, O, 1, 1, O, 1
confusion matrix(y true, y pred) 0 1
array([[2, O], 0
(1, 311) True
Class
1

tn, fp, fn, tp = confusion matrix(y true, y pred).ravel()
tn, fp, f£n, tp

(2, 0, 1, 3)

Metrics for classification performance

- Accuracy (dztr)
- Error Rate (2X}2)
- Precision (Y T)
- Specificity (50| &)

- Sensitivity (21ZHE)

TP+TN
TP+ TN+FP+FN

Accuracy=

FP+FN
TP+TN+FP+FN

Errorrate= =(1-Accuracy)

TP

PPE’C"S“G”:ﬁ (PPV: Positive Predict Value)

TN

Spemﬁct@:m (TNR: True Negative Rate)

TP

Sensitivity= TP+FP (TPR: True Positive Rate)

AlA| Class CHH|
doiL & HSi=0

N PMA L

‘d=2t (Accuracy, ACC)

- ™A cijolE thH] ‘E=s5tA o=et Zi+=2| HE

Prediction
TP + TN 1 0
ACC =
TP + TN T FP + FN 1 True False
Actual Positive Negative
ACC = 1— ERR R0 | e | e

QL X2 (Error Rate, ERR)

- ™A cijo]E CiH] R E =5t o=t /2] H|E

Prediction
FP + FN 1 0
ERR =
TP+ TN+ FP + FN 1 True False
Actual Positive Negative
ERR =1 — ACC 0| e | e

import numpy as np

from sklearn.metrics import accuracy score
y pred = np.array([0, 1, 1, 0])

y true = np.array([0, 1, 0, 0])

sum(y true == y pred) / len(y true)

0.75

accuracy score(y true, y pred)

0.75

=
Dataset?| x|

= Yol Datasetl| &

14.8, 2F 0.015%

Hat Hl=E 3%

| StAFE XL

FC}EH 2

e
o
| W—

Accuracy =

2k}

https://svds.com/learning-imbalanced-classes/

Metrics for
Imbalanced Dataset

U (Precision, Positive Predictive Value)

- 2’80|2ta of| 5ot H| =
=) O

go|ct ZOtLE E

Prediction
TP 1 0
PRECISON(PPV) —_ 1 True False

TP + FP Actual

Class 0 False True
Positive | Negative

Positive | Negative

https://en.wikipedia.org/wiki/Sensitivity_and_specificity

from sklearn.metrics import precision score

y pred = np.array([0, 1, 1, O
y true = np.array([0, 1, 0, O]

sum((y pred == 1) & (y pred == y true)) / sum(y pred)

0.5

precision score(y true, y pred)

0.5

sklearn.metrics.precision_score

sklearn.metrics. precision_score (y_true, y_pred, labels=None, pos_label=1, average="binary’
sample_weight=None) [source]

labels : list, optional

pos_label : str or int, 1 by default

average : string, [None, ‘binary’ (default), ‘micro’, ‘macro,
'samples’, ‘'weighted’]

sample_weight : array-like of shape = [n_samples],
optional

average : siring, [None, ‘binary’ (default), ‘micro’, ‘macro’, ‘'samples’, ‘weighted’]

This parameter is required for multiclass/multilabel targets. If 8¥one , the scores for each

class are returned. Otherwise, this determines the type of averaging performed on the
data:

"binary’ :
Only report results for the class specified by pos_label . This is applicable only if
targets (v_{true,pred}) are binary.

‘micro’ :

Calculate metrics globally by counting the total true positives, false negatives and
false positives.

‘macro’ :

Calculate metrics for each label, and find their unweighted mean. This does not take
label imbalance into account.

‘'weighted' :
Calculate metrics for each label, and find their average, weighted by support (the

number of true instances for each label). This alters ‘macro’ to account for label
imbalance; it can result in an F-score that is not between precision and recall.

‘samples ' :
Calculate metrics for each instance, and find their average (only meaningful for
multilabel classification where this differs from accuracy score).

from sklearn.metrics import precision score

y pred = np.array([0, 1, 1, O
y true = np.array([0, 1, 0, O]

sum((y pred == 1) & (y pred == y true)) / sum(y pred)

0.5

precision score(y true, y pred)

0.5

y true = [0, 1, 2, 0, 1, 2]

y_pred = [0, 2, 1, 0, 0, 1]

confusion matrix(y true, y pred
HH B

array([[2, O, 0], "C.

Calculate metrics globally by counting the total true positives, false negatives and

[1 ’ 0 ’ 1] / false positives.

‘macro’ : (LabEIE Zk -6=-||-)9-I rgﬂ'
[0 r 2 ’ 0]]) Calculate metrics for each label, and find their unweighted mean. This does not take
label imbalance into account.

precision score(y true, y pred, average='macro')

0.22222222222222221 precision_score(y_true, y_pred, average=None)

array([0.66666667, O. , 0. 1)

precision score(y_true, y pred, average='micro')

0.33333333333333331

OZ & (Sensitivity, Recall, True Positive Rate)
- AN 378 Ho|e = 37do|2t of| F¢t v =, HtekE, JE S

gl - eholatn olso5tA =712

ne m
=
I
A0
oM

Prediction
RECALL(TPR) TP P 1 ;
— —_ — rue alse
TP+ FN P actual |1 | posiive | Negative
Class 0 False True
Positive | Negative

https://en.wikipedia.org/wiki/Sensitivity_and_specificity

from sklearn.metrics import recall score

Il

y pred np.array([0, 1, 1, 0])
y true = np.array([0, 1, O,

sum((y _true == 1) & (y pred == y true)) / sum(y_ true)
+- RECALL(TPR) 7 7 :redidio:)
N TP Bs FN N P True False
recall score(y true, y pred) Actual 1 Positive | Negative
Class 0 False True
Positive | Negative

1.0

y true = [0, 1, 2, 0, 1, 2]
y_pred = [0, 2, 1, 0, O, 1]
recall score(y true, y pred, average= macro)

0.33333333333333331

recall score(y true, y pred, average='micro')

0.33333333333333331

recall score(y true, y pred, average=None)

array([1., 0., 0.1])

S04

—~

Specificity, True Negative Rate)

=g dnpt & SFo|ata QlAjslETte
-HH R EF £ S deho| 2ot H| =
Prediction
pe TN TN 1 0
— e True False
TN + F P N Actual 1 Positive | Negative
Class 0 False True
Positive | Negative

https://en.wikipedia.org/wiki/Sensitivity_and_specificity

0
W
(@]
O
q
D
~

F1 Score (F-measure,

- Precision2} Recall| E&tst
P~

- Precisiond} Recall9]

Prediction

precision x recall 1 0

Fl = 2 — 1 True False
pT'eClSlOTl + Tecall Actual Positive | Negative

Class 0 False True
Positive | Negative

https://en.wikipedia.org/wiki/Sensitivity_and_specificity

from sklearn.metrics import f1 score
y pred = np.array([0, 1, 1, 0])
y true = np.array([0, 1, 0, 0])

pre = precision score(y true, y pred)
rec = recall score(y true, y pred)

2 * (pre * rec) / (pre + rec)

0.66666666666666663 F ::ZIW%HHSMWl*TecaH
1 precision + recall

fl score(y true, y pred)

0.66666666666666663

y true = [0, 1, 2, 0, 1, 2]
y_pred = [0, 2, 1, O, O, 1]
fl score(y true, y pred, average= macro)

0.26666666666666666

fl score(y true, y pred, average='micro')

0.33333333333333331

fl score(y true, y pred, average=None)

array([0.8, 0. , 0. 1)

Example

PRECISON(PPY) = ———=
Prediction
RECALL(TPR) = ——+ 1P
1 0 “TP+FN P
TN TN
At 90 210 | 300 spc= TV __T!
Class 140 | 9560 | 9700
230 9770 10000

Precision - Recall Curve

- 0= 2tE ThresholdE H3}A|7q Precision/Recall &8

- A 4= 2 I F-&5H A8 7ts

2-class Precision-Recall curve: AP=0.88

1.0 1

0.8 1

0.6 1

0.4 1

0.2 1

0.0 T T T T
0.0 0.2 0.4 0.6 0.8

1.0

import numpy as np

from sklearn.metrics import precision recall curve

y true = np.array([(0, 0, 1, 17])

y scores = np.array([0.1, 0.4, 0.35, 0.8])

precision, recall, thresholds = precision recall curve(
y _true, y scores)

precision

array([0.66666667, 0.5 , 1. , 1.

recall

array([1. , 0.5, 0.5, 0. 1)

thresholds

array([0.35, 0.4 , 0.8 1)

Precision - Classification Report

- Classification =H|0| A St Precision, Recall, F1 Zi} &

precision recall fl-score support
class 0 0.50 1.00 0.67 1
class 1 0.00 0.00 0.00 1
class 2 1.00 0.67 0.80 3

avg / total 0.70 0.60 0.61 5

from sklearn.metrics import classification report
y true = [0, 1, 2, 2, 2]

y pred = [0, 0, 2, 2, 1]

target names = ['class 0', 'class 1', 'class 2]

print (classification report(y true, y pred, target names=target names))

precision recall fl-score support
class 0 0.50 1.00 0.67 1
class 1 0.00 0.00 0.00 1
class 2 1.00 0.67 0.80 3

avg / total 0.70 0.60 0.61 5

Suppo

recall fl-score

e O N h WD < M
oY an OGO OGN O O OGN O

SRR ®

precision

I N ST~ T =T . S s

i A r ar 1 r

EHEOTNG S

BN eEmeE

o

ﬁ_ﬁ_ﬁ_.ﬂ.ﬂuﬁ_ﬁ_%ﬁ_ﬂu

H__H__H__H__H_.I_%_H_EH_

Eﬁﬂaﬁﬁﬁlﬁl

Elﬂﬂﬂﬂﬂﬂﬂﬂﬂ
tﬂﬂlmﬂﬂﬂﬂﬂl

H_lﬁﬁ_ﬁ_ﬁ_ﬁ_ﬁ_ﬁ_ﬁ_

_H_E_H__H__H__H_.I__H__H__H_

2R E
_u_n_
r_r_r_r_r_r_r___l_r_r_
r_

Confusion matri

@.97 @.97

9.97

g / total

TEAML/AB

Human knowledge belongs to the world.

