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e Home
e Linear Regression - Ordinary Least Squares Method

Linear Regression - Ordinary Least Squares Method

Y: -0.26898102867433593x+297.9945080961918

https://sujinleeme.github.io/javascript-machine-
learning/linear-regression-ols
https://www.facebook.com/sujinlee.me



https://sujinleeme.github.io/javascript-machine-learning/linear-regression-ols
https://www.facebook.com/sujinlee.me
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Review: Scalar derivative rules

Scalar derivative notation with

Rule X Example
fx) respect to x P
Constant C 0 ;—299 = ()
Multiplication by of oA §_f Iy — 3
constant dx dx
Power Rule X" nxt ! 43 =357
Sum Rule f+eg if,—i—kf;—'-‘{ fj—’;(xz—l—&x) = 2x+ 3
; — df _ dg d (2 _ — Ty —
Difference Rule f—g L ok S(x"=3x) =2x -3
lg | df d 2
Product Rule fa foE+ ﬁg ﬁxz_x = x% + x2x = 3x
: dfu) l 2y 1A, 2
Chain Rule flg(x)) %ﬁj let u = g(x) =ln(x*) = 52x = =

http://parrt.cs.usfca.edu/doc/matrix-calculus/index.html
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1.0Q Gradient descent
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1
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L 0.8—0.1%2%0.8=0.64

0.64—0.1%2%x0.64 =0.512
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HA K
100 - [
an -
B0 -
_q_D.
x = 10
derivative = []
“ y =[]
for i in range(1000):
0 old value = x
~100 -75 -50 -25 00 25 50 75 y.append(old_value ** 2)

derivative.append(old value - 0.01 * 2 * old value)
X = old value - 0.01 *2* pld value

Lnew — Lold — & X (onld)
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25

5.0

75

x = 10
derivative
Y =[]

=11

for i in range(1000):
old value = x
v.append({old value ** 2)

derivative.append(old value - 0.0]
old value - 0.01 *2* old wvalug

:{:

HA XN

7

gradient v
10
20 9.8
19.6 9.604
9.604 9.50796
9.50796 9.41288
941288 | 9.318752
9.318752 | 9.225564
9.225564 | 9.133308
9.133308 | 9.041975
9.041975 | 8.951556
8.951556 | 8.86204
8.86204 8.77342
8.77342 8.685685
8.685685 | 8.598829
8.598829 | 8.51284
8.51284 | 8427712
8.427712 | 8.343435
ota )
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Learning rate0{| CHe M7
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for i in range(1000):
old value = x
v.append{old value ** 2)
derivative.append(old value - 0.01 * 2 * old wvalue)
X = old value - 0.01 *2* pld value
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f(z) =z sin(z*) + 1 d T .
A= (E.Lm.:}.?m f( ) — SlIl(CCQ) —+ O COS(Q?Q)

dx

E_
. (0.2 2 2
T :=1x — « X sin(z?) + 22~ cos(x*)
Eﬁfﬁfz‘ def sin f t1 (%)
. . . ' 1 ef sin function(x):
- H“Z4 0 1 Eﬁ/ 3 return X * np.sin(x ** 2) + 1
(2.05) = —4.98 def derivitive f(x):

return np.sin(x**2) + 2 * (X **2) * np.cos(x ** 2)

http://www.wolframalpha.com/input/?i=derivative+x+sin(x%5E2)+%2B+1



=250| B2 &9 2

O L.
LS = é‘l‘t?

X= np.arange(-3,3,0.001)
f x = sin function(x)

plt.plot(x, £ Xx)

plt.show()
_]_-
4
-7 :
3 -3 -2 -1 H
4
2-
3_.
1-
2.
07 1
_]_ L 0
-7 : -1
-3 -2 -1 H 1 2 3
Sy







TEAML/AB

Human knowledge belongs to the world.



Linear Regression with GD

Linear Regression

Director of TEAMLAB
Sungchul Choi




SHX} ‘HINO|Q’ £ 2 ol At
SR B 4

(B 7HE AD

24
O sxt‘2aoe 4

1,0308 3
866% X
7279+
(ofl &)
6128 H 16,430
4878
12,008 12,078
10,132
8,759
apM ZADH: 2%} el OfH2|7):  QIEjARE}

A3 O0IHE SR

487
612
366

1030

Minimize J(wq, w1)

w
W = 0
w1
> (w1 +wo —yW)?
1=1



w1

)
imize J(wq, w1
Mini



Y

J(’UJ(), wl)

0.6 | Data gmd ﬁF | 0.10 | Cpst lemt:tu:aln |
— & =0.MM
b4
_— g =0.184 w0
0.4H — & =0.301 0.08¢
— & =0.374
& =0.420
0.2} 0.06}
0.0} <  0.04}
i:;’
—0.2} 0.02}
—0.4} 0.00}
-
x
-0.6 - - - - - -0.02 - - - - -
~15 -1.0 -0.5 0.0 05 10 15 -0.2 0. 02 04 06 08 10

T ]

https://scipython.com/blog/visualizing-the-gradient-descent-method/



'

.
.
.
.
.
-
.

L
™ .

.t
et .
.- .

=

3 .
ent* .
.
.
.
.
.
-
L
b .

wrt
. .

.
- .
ae®
e -
at® .
e .
.
.
.
.
-
.

.t .

e
e® .
cot® .
. .
. ¢
.
.
-

sasnnnnnnnnlannnnnns

pasnnsdensnnnnnnnsnfannnnnsnnnnnfonnnns

R s



Za parameter?| 2H|0|E



Linear regression with GD
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Linear regression with GD
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m
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loop until convergence{ o i=1
O O 1) DY)
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Linear regression with GD
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Gradient Descent=
Linear Regression -6 2.7



400 1

300 1

200 1

100 1

-4 |
i
(1]
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df = pd.read csv("data/slr06.csv")

df.head()

X Y

20

0 108 392.5
1 19 46.2
2 13 157
3 124 4222
4 40 1194

raw X = df["X"].values.reshape(-1,

y = df["Y"].values

plt.figure(figsize=(10,5))

plt.plot(raw X,vy,

IDI,

alpha=0.5)

1)



raw X[:5], y[:5]

(array([[108],
[ 191,
[ 131,
[124],
[ 40]1]), array([ 392.5, 46.2, 15.7, 422.2, 119.41))

np.ones((len(raw X),1))[:5]

array([[ 1.],
[ 1.1,
[ 1.1,
[ 1.1,
[ 1.11)

X = np.concatenate( (np.ones((len(raw X),1)), raw X ), axis=l)
X[:5]

arravy([[ 1., 108.],
[ 1., 19.1],
[ l., 13.17,
[ 1., 124.],
[ 1., 40.11)



W np.random.normal((2,1))
# w = np.array([5,3])
W

array([ 3.19571562, 0.774299041)

plt.fiqure(figsize=(10,5))
200 - plt.plot(raw X,y, 'o', alpha=0.5)

y_predict = np.dot(X, w) Y — XW
plt.plot(raw X,y,"0o", alpha=0.5)
plt.plot(raw X,y predict)

300 1

200 1

100 o _——

0 20 40 &0 80 100 120



def hypothesis function(X, theta): f(a’/’) — he (a’/')
return X.dot(theta)
hypothesis function(X,w)[:5]

array([ 86.82001149, 17.9073973 , 13.26160309, 99.20879607, 34.167677061])

def cost function(h, y):
return (1/(2*len(y))) * np.sum((h-y)*#*2)

m

h = hypothesis function(X,w) ::_l_ ()\ _ ,,(3))\2
cost function(h, v) J(wo, w1) inzg;U%Nx ) —y")

5479.1213778520041



def gradient descent(X, y, w, alpha, iterations):

theta = w
m = len(y)

1 = | N
theta list = [theta.tolist()] f(&) = hg(zx) J(wo,w1)= - Z(hg(a;“)) )
cost = cost function(hypothesis function(X, theta), y) M=
cost list = [cost]

. o 27 LS wis® 4 g~ )
for 1 i1in range(iterations): dwo e

t0 = theta[0] - (alpha / m) * np.sum(np.dot(X, theta) - y)
tl = theta[l] - (alpha / m) * np.sum((np.dot(X, theta) - y) * X[:,1])
theta = np.array([t0, tl]) m _ _ ,
if 1 % 10== 0: =1
theta list.append(theta.tolist())
cost = cost function(hypothesis function(X, theta), y)

cost list.append(cost)

return theta, theta list, cost list



def gradient descent(X, y, w, alpha, iterations):

theta = w
m = len(y)

1 = | N
theta list = [theta.tolist()] f(&) = hg(zx) J(wo,w1)= - Z(he(l‘(z)) )
cost = cost function(hypothesis function(X, theta), y) M=
cost list = [cost]

. o 27 LS wis® 4 g~ )
for 1 i1in range(iterations): dwo e

t0 = theta[0] - (alpha / m) * np.sum(np.dot(X, theta) - y)
tl = theta[l] - (alpha / m) * np.sum((np.dot(X, theta) - y) * X[:,1])

theta = np. t0, tl =
eta = np.array([ 1) 3_J:iz(wlx<i>+wo_y<z‘>)x<z’>
loop until convergence{ =
o .tolist())
(k)Qj?ZHj—‘@E@;J<@%91) pothesis function(X, theta), y)
}

return theta, theta list, cost list



def gradient descent(X, y, w, alpha, iterations):

theta = w
m = len(y)

1 = | N
theta list = [theta.tolist()] f(&) = hg(zx) J(wo,w1)= - Z(hg(a;“)) )
cost = cost function(hypothesis function(X, theta), y) M=
cost list = [cost]

. o 27 LS wis® 4 g~ )
for 1 i1in range(iterations): dwo e

t0 = theta[0] - (alpha / m) * np.sum(np.dot(X, theta) - y)
tl = theta[l] - (alpha / m) * np.sum((np.dot(X, theta) - y) * X[:,1])
theta = np.array([t0, tl]) m _ _ ,
if 1 % 10== 0: =1
theta list.append(theta.tolist())
cost = cost function(hypothesis function(X, theta), y)

cost list.append(cost)

return theta, theta list, cost list



iterations = 10000
alpha = 0.001

theta, theta list, cost list = gradient descent(X, y, w, alpha, iterations)
cost = cost function(hypothesis function(X, theta), y)

print("theta:", theta)
print('cost:’', cost function(hypothesis function(X, theta), v))

theta: [ 19.8878307 3.4161265]
cost: 625.373840751



plt.figure(figsize=(10,5))

y predict step= np.dot(X, theta list.transpose())

plt.plot(raw X,y,"o", alpha=0.5)

for i in range (0,len(cost list),100):
plt.plot(raw X,y predict step[:,i], label='Line %d'%1i)

plt.legend(bbox to anchor=(1.05, 1), loc=2, borderaxespad=0.)
plt.show()
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1 ; ) .
J(wo,wr, ..., wy) = - (w127 + wor? + -+ wpz® 4wy — y©)?
1=1
L = 7@ ()2
:%Z(W x\" =y
1=1
0J 1 <& .
Foe = m Z(WTX(Z) — y)
1=1
0J 1 « . .
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oJ 1 «— . .
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for in range(iterations): aJ 1 m

redictions = x.dot(theta T 7) 7
P ( ) 5 :_E:(W X()—y())-a}n
for i in range(theta.size): Wn, m i—=1
partial marginal = x[:, 1]
errors xi = (predictions - y) * partial marginal
theta[i] = theta[i] - alpha * (1.0 / m) * errors xi.sum()

theta history.append(theta)
cost history.append(compute cost(x, y, theta))



for in range(iterations): aJ 1 m

redictions = x.dot(theta T 7) 7
P ( ) 5 :_E:(W X()—y())-a}n
for i in range(theta.size): Wn, m i—=1

partial marginal = x[:, 1]

errors xi = (predictions - y) * partial marginal

theta[i] = theta[i] - alpha * (1.0 / m) * errors xi.sum() 6J

theta history.append(theta) wn e wn T Oéa—
cost history.append(compute cost(x, y, theta)) wO
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Boston House Price Dataset

- 4l 2'd S HIOJE &M= X5 b= U,
1% CHEE S 2 AFESH= Example Dataset
-1978'A0]| ZHE H|O|E{=Z, O|= QS A| Al Z1}
0| HAE X|Ho| =Bl 71H0f| B 245S Fe|g

http://lib.stat.cmu.edu/datasets/boston
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Boston House Price Dataset

[01] CRIM AR Al town) € 1012 HEg
[02] ZN 25000 B2HO|EE =0cts HFA| D2 H g
[03] INDUS H|0f x| go| ot s EXS H[E
[04] CHAS EAZ it HojE==(Z2 FAY Xzt d=E= 1, OFLEH 0)
[05] NOX 10ppm 2 =% YAZEL
[06] RM FER O E B 2E] A=
[07] AGE 19404 O|F 0 H=E ~FFE2 H|2
[08] DIS 572 EAE MAMEIX S B2 A=
[09] RAD SPAbE CEMRS B2 K
[10] TAX 10,000 &8 & MM E
[11] PTRATIO AR Al (town) 2 S/ WA B2
[12] B 1000(Bk-0.63)~2, 7| M Bk= AHX|A|E E212] HE2 ZE.
[13] LSTAT DECe] SR AE2] B 2 (%)
" [oaveov =0l 250 2R IABSE) (U9 $1,000 |

http://www.dator.co.kr/ctg258/textyle/1721307

http://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
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from sklearn.datasets import load boston
import matplotlib.pyplot as plt
import numpy as np

boston load boston()

X data = boston.data
y data = boston.target.reshape(boston.target.size, 1)

X data[:3]
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array([[ 6.32000000e-03, 1.80000000e+01, 2.31000000e+00,
0.00000000e+00, 5.3B000000e-01, 6.57500000e+00,
6.52000000e+01,  4.09000000e+00, 1.00000000e+00,
2.96000000e+02, 1.53000000e+01, 3.96900000e+02,
4.98000000e+00],

[ 2.73100000e-02, 0.00000000e+00, 7.07000000e+00,
0.00000000e+00, 4.69000000e-01, 6.42100000e+00,
7.89000000e+01, 4.96710000e+00, 2.00000000e+00,
2.42000000e+02, 1.78000000e+01, 3.96900000e+02,
9,14000000e+007],

[ 2.72900000e-02, 0.00000000e+00, 7.07000000e+00,
0.00000000e+00, 4.69000000e-01, 7.18500000e+00,
6.11000000e+01, 4.96710000e+00, 2.00000000e+00,
2.42000000e+02, 1.78000000e+01, 3.92830000e+02,
4.03000000e+00]])
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from sklearn import preprocessing

minmax scale = preprocessing.MinMaxScaler().fit(x data)

X scaled data = minmax scale.transform(x data)

X scaled data[:3]
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array([[ 0.00000000e+00, 1.80000000e-01, 6.78152493e-02,
0.00000000e+00, 3.14814815e-01, 5.77505269e-01,
6.41606591e-01, 2.69203139e-01, 0.00000000e+00,
2.08015267e-01, 2.87234043e-01, 1.00000000e+00,
8.96799117e-02],

[ 2.35922539e-04, 0.00000000e+00, 2.42302053e-01,
0.00000000e+00, 1.72839506e-01, 5.47997701le-01,
7.82698249e-01, 3.48961980e-01, 4.34782609e-02,
1.04961832e-01, 5.53191489e-01, 1.00000000e+00,
2.04470199e-011,

[ 2.35697744e-04, 0.00000000e+00, 2.42302053e-01,
0.00000000e+00, 1.72839506e-01, 6.94385898e-01,
5.99382080e-01, 3.48961980e-01, 4.34782609e-02,
1.04961832e-01, 5.53191489e-01, 9.89737254e-01,
6.34657837e-0211)



Train-Test Split

from sklearn.model selection import train test split

X train, X test, y train, y test = train test split(x scaled data, y data, test size=0.33)

X train.shape, X test.shape, y train.shape, y test.shape

((339, 13), (167, 13), (339, 1), (167, 1))



Linear regression fitting

from sklearn import linear model

regr = linear model.LinearRegression(fit intercept=True, normalize=False, copy X=True, n_jobs=1l)
regr.fit(x_scaled_data, y data)

# # The coefficients
print( 'Coefficients: ', regr.coef )
print( ' intercept: ', regr.intercept )

Coefficients: [[ -9.53495156 4.63952195 0.56906733 2.6885614 -8.64873871
19.85700309 0.07292809 -16.22877191 7.03006588 -6.46057746
-8.96255741 3.7248827 -19.04291078]]

intercept: [ 26.61291386]

Y = W1Xq1 + WyXy + [3X3 + WpX, + WeXc
+WeXe + WoXs + - Wi3Xq3 + Wy - 1



regr.predict(x _data[0].reshape(l,-1))

array([[-483.19114376]])

X data[0].dot(regr.coef .T) + regr.intercept

13
Z WiX; = WT - X
i=0

array([-483.19114376])



Metric &8

from sklearn.metrics import r2 score
from sklearn.metrics import mean absolute error
from sklearn.metrics import mean squared error

y true = y test
y hat = regr.predict(X test)

r2 score(y true, y hat), mean absolute error(y true, y hat), mean squared error(y true, y hat)

(0.6835404325597263, 3.5517583251413343, 27.19728458900094)
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Gradient descent

fix) |
flx) =x°
1.0Q Gradient descent
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Gradient descent

flx) = x*

1.0 Gradient descent

flx)

0.80 <
0.60 =

0.40 0- i .

0.20 0 A e 10

0.0 1 20 -20 o,
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 x 0

Lnew — Lold — & X (2$0ld) 0; =0, _O‘—,J(eanl)



Gradient descent

fEy=s
Gradient descent

0.0
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75

Tnew — Lold — & X (2$0ld)




Gradient descent




Full-batch gradient descent

0
(93' = Hj — &%J(eo, (91)




Full-batch gradient descent

- GD= 1718 HIo|H & 7|EL22 0|F
- J2{L} YHIHo 2 GD = (fuII) batch GD2}1 7}

- BEGO|E MR a2 Ly w0

8wn




Full-batch gradient descent

XY z£|H3) 7ts
H22| X (ex - 3047l2| C|O|E{E SHEHO||?)

12 dataset > D/t HE] YUHO|E7} =2 E



Full-batch gradient descent

XY z£|H3) 7ts
H22| X (ex - 3047l2| C|O|E{E SHEHO||?)

12 dataset > D/t HE] YUHO|E7} =2 E



Stochastic
gradient descent




Stochastic gradient descent




Stochastic gradient descent

Hell 2|0]= datasetd|A] random©dt#| training
sample2 o S ol2sth il Al-g.'c'él-

= Hie T | dHd 232

Datas ‘27| 0| Shuffle

procedure SGD
shuffle(X) > Randomly shuffle data
for 1 in number of X do
0; :=0; —a(jh) — y(i))xy) > Only one example
end for

end procedure




Stochastic gradient descent
of YHO|E 2 H5 A 7 S

Hioll choll o 22| ==

MO

Z OIOIE{A] A|ZHO] 2EfEE

o
| costZ7t EO0EX| BB= AMlEel B

stol 7t

—_— L

o] M=



Mini-batch
(stochastic) gradient descent




Mini-batch SGD

o| H|o|E| & ~Eot| &0tA =5
GDE =gt 7|8

H L

2 0| A0|l= 7|H



Epoch & Batch-size

A Cllo|E{7} Training CIO|E{0]| S01& If 7I2%

Full-batchS n'H 225}™ n epoch
Batch-size St st k|= H|O|E{2] 7=~

5,12072| Training data®|l 512 batch-size™
st& 2 OflOF 1 epochO| E|=71?



Mini-batch SGD

1: procedure MINI-BATCH SGD

2 shuffle(X) > Randomly shuffle data
3: BS <— BATCH SIZE

4: NB <— Number of Batches
5 NB < len(X)//BS

6

7

for 1 in NB do e )
1+1)* ~
(2+1) (y(k) . y(k))x( )

0; =0, —a) . 5o ; > Batch-sized examples
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Mini-Batch SGD

for epoch in range(epoches): XM EpochO] iteration &|&= =l
X copy = np.copy(X)
if is SGD: SGD o:l'hll‘ -> SGD?EI 75"?‘ shuffle
np.random.shuffle(X copy) N N
batch = len(X copy) // BATCH sIzE erfH0]| X{2|S}= BATCH_SIZE
for batch count in range(batch):
X batch = np.copy(
X copy[batch count*BATCH SIZE : (batch count+1l)*BATCH SIZE])

# Do weight Update BATCH_SIZE 37| 2H& X_batch 44
print( "Number of epoch : %d" % epoch)



Convergence process

- ool B
i 1

® o .%°
s from sklearn.datasets.samples generator import make regression
X, y = make regression(n samples = 1000,

n features=1,

noise=10,

random state=42)

.75873949],
.03184454],
.487606221,

.18645431], — T
.725766621, 4
.97255445],
.64537595],
.68189149],
.43014138],
.0666746911)

H R OOOOOORKRRE

[
[
[
[
[
[
[
[
[
[



Convergence process

gd 1lr = linear model.LinearRegressionGD(eta0=0.001], epochs=10000, batch size=1, shuffle=False)

bgd 1r linear model.LinearRegressionGD(eta0=0.001], epochs=10000, batch size=len(X), shuffle=False)
sgd 1r linear model.LinearRegressionGD(eta0=0.001, epochs=10000, batch size=1, shuffle=True)

msgd lr = linear model.LinearRegressionGD(eta0=0.001], epochs=10000, batch size=100, shuffle=True)

for epoch in range(epoches):
X copy = np.copy(X)
if is SGD:
np.random.shuffle(X copy)
batch = len(X copy) // BATCH SIZE
for batch count in range(batch):
X batch = np.copy(
X copy[batch count*BATCH SIZE : (batch count+1l)*BATCH SIZE])
# Do weight Update
print( "Number of epoch : %d" % epoch)



Convergence process

300 A

240 - SGD Only
250 1
220 1
2007 | 200 - \\-\
150 | 1804 [T e
160 4
100 -
140 4
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Convergence process
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Time-consuming

stimeit gd lr.fit(X,y) Gradient descent

1.37 s =+ 18.3 ms per loop (mean * std. dev. of 7 runs, 1 loop each)

ttimeit bgd lr.fit(X,y) Full-batch Gradient descent

3.74 ms * 121 us per loop (mean * std. dev. of 7 runs, 100 loops each)

stimeit sgd lr.fit(X,y) Stochstic Gradient descent

1.47 s * 14.5 ms per loop (mean * std. dev. of 7 runs, 1 loop each)

stimeit msgd lr.fit(X,y) Minibatch-SGD

122 ms ¥ 1.07 ms per loop (mean * std. dev. of 7 runs, 10 loops each)



TV radio newspaper sales
1 230.1 37.8 69.2 22.1
2 445 393 451 104
3 172 459 69.3 9.3
4 1515 413 58.5 185
5 180.8 10.8 58.4 129

cales

from sklearn import preprocessing

X scaled =
y = sales
X scaled [:

array([

[ 0.
[-1.
[-1.
[ 0.
[ 0.

Multivariate
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preprocessing.scale(ad cost)
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1.
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0
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Learning-rate decay

U™t 7|2 Learning rate2 ZAA|7| = U
=’8 epoch OLC} Learning rateS &4
self._etal0 = self._etal * self. _learning_rate_decay

Hyper-parameter 2782| 0|&{&
o7y

(1+ kt)

Nadr a=ae™ 1t 8L a=



o
SR ZZH2 A% - tol > loss - previous_loss

tol2 hyperparameter2 AlE A7d et
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Overfitting



Overfitting

St& 00| E| 1t X| X3t > M Z 2 H|0|E{2] 0= |

A A

> > >

Underfitting Just right Overfitting

https://goo.gl/aP8iFa



2|2 L0 7K F2, W
of £a|g MSX

Occam’s razor

https.//ko.wikipedia.org/wiki/%EC%98%A4%EC%BB%B4%
EC%9D%98_%EB%A9%B4%EB%8F%84%EB%82%A0



Bias — Variance tradeoff

sH&HO|E THCH 2| Hs > A2 Hlo|E{o] 0=

A
< > >

High bias Just right High variance

A

https://goo.gl/aP8iFa



Bias — Variance tradeoff

Low High
Variance Variance H ig h b i as

<« glay @0 BEO| O
@X =25l §O|E{Tt H|2 &t
> 2 E Weight?t Update

High variance

2= Hojefof TESHA St
Error§ 12{5}X| &S

> B E Weight?| Update

http://scott.fortmann-roe.com/docs/BiasVariance.html

High
Bias

Low
Bias




Error

Train-Test Error

Testset

Trainset




Overcoming Overfitting
O B2 H|O|EF &8t}
Feature2| 7|2
X H35| Parameter

Regularization



Regularization
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L1 regularization

- 7| & Cost function L1(norm) penalty term2 7}

)= 5o 3 (o) ) 4 Zw

- norm - H'"E'I.?_ 7EOI k=] ﬂjl% é OI_I_ I-bél-l

| . L1= manhattan distance
lzlly == 2 e |7l eyxio A WIE] pEIIX|C] A2

http://taewan.kim/post/norm/



L2 regularization

] — R
S _ <z>) AN 2
2m ( Y T 9 Z J
1=1 ]:1
1 — . | .
90 p— 90 — X E E (he(x(z)) _ y(z))ﬂ:(())

(1 | @) A ]
0. =0, —a (m Z(h@(x(z))y(z))x§>)+9j je{1,2..n)




L2 regularization

[ 1
6)]’—& (m

m

1=1

. N )
> (ho(x?) — y1)a] )> + —0;




Normal equation approach

™m

J(@):%Z(m(w ) L2 292

1=1
J(O) = (y— X0)" (y— X0) + \0'6
—yly—0' Xy — oyt X0+ 01 XT X0+ X010
—yly—0' Xty -0 Xy + 07 X1 X0+ 61010
=y'y 200 X Ty + 0" (X' X + A0



Normal equation approach

JO)=y'y —200 X'y + 01 (X' X + IO

9.7 (0)
90

= 22Xy +2(XTX + A0

(XTX4+XN0=XTy - 0=(XTX+ )Xy
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L2 regularization

- 7|Z Cost function L2(norm) penalty term2 7}

™m

J(@):%Z(m(w ) L2 292

1=1
- norm - WIE{9] Zo| 52 37| & FE5I= LA

H(Q)HQ L2= Euclidean distance
© MM HE| FEMX|Q| Az



L2 regularization
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L2 regularization

[ 1
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Normal equation approach

™m

J(@):%Z(m(w ) L2 292

1=1
J(O) = (y— X0)" (y— X0) + \0'6
—yly—0' Xy — oyt X0+ 01 XT X0+ X010
—yly—0' Xty -0 Xy + 07 X1 X0+ 61010
=y'y 200 X Ty + 0" (X' X + A0



Normal equation approach

JO)=y'y —200 X'y + 01 (X' X + IO

9.7 (0)
90

= 22Xy +2(XTX + A0

(XTX4+XN0=XTy - 0=(XTX+ )Xy



L1 regularization

- 7| & Cost function L1(norm) penalty term2 7}

)= 5o 3 (o) ) 4 Zw

- norm - H'"E'I.?_ 7EOI k=] ﬂjl% é OI_I_ I-bél-l

| . L1= manhattan distance
lzlly == 2 e |7l eyxio A WIE] pEIIX|C] A2

http://taewan.kim/post/norm/
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betal? betal?
https.//stats.stackexchange.com/questions/151304/why-
is-ridge-regression-called-ridge-why-is-it-needed-and-
what-happens-when



L1

Unstable solution
Always on solution
Sparse solution

Feature selection

L2

Stable solution
Only one solution

Non-sparse solution
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0 A2{'do] Sh WHE

Gradient descent based learning
Probability theory based learning
Information theory based learning

Distance similarity based learning



Classification Problem

L TV HCHZ S017t =71

ID RPM VIBRATION STATUS ID RPM VIBRATION STATUS
1 568 585 good 29 562 309 faulty
2 586 565 good 30 578 346 faulty
3 609 536 good 31 593 357 faulty
4 616 492 good 32 626 341 faulty
5 632 465 good 33 635 252 faulty
6 652 528 good 34 658 235 faulty
7 655 496 good 35 663 299 faulty
8 660 471 good 36 677 223 faulty
9 688 408 good 37 685 303 faulty
10 696 399 good 38 698 197 faulty
11 708 387 good 39 699 311 faulty
12 701 434 good 40 712 257 faulty
13 715 506 good 41 722 193 faulty
14 732 485 good 42 735 259 faulty
15 731 395 good 43 738 314 faulty
16 749 398 good 44 753 113 faulty
17 759 512 good 45 767 286 faulty
18 773 431 good 46 771 264 faulty
19 782 456 good 47 780 137 faulty
20 797 476 good 48 784 131 faulty
21 794 421 good 49 798 132 faulty
22 824 452 good 50 820 152 faulty
23 835 441 good 51 834 157 faulty
24 862 372 good 52 858 163 faulty
25 879 340 good 53 888 91 faulty
26 892 370 good 54 891 156 faulty
27 913 373 good 55 911 79 faulty

28 933 330 good 56 939 99 faulty




Classification Problem

Vibration

P o L 4

click to

500 -

400 -

300 -

200 A

100 -

scroll cutput; double click to hide
good
faulty
(=)
ME D0 XH
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Classification Problem
Vibration - V/ihration = 830 — 0.667«RPM

600 A

R [T

good
500 - faulty

400 -

300 -

200 A

100 -

550 600 650 700 750 800 850 900 950
RPM



Classification Problem

f(x) =803 — 0.667« RPM — 1 Vibration =0

1 if >
Status = { it fz) 20

0 otherwise



Classification Problem
HEH sts= AlENN?

f(x) =803 — 0.667 x RPM — 1 % Vibration = 0

| >
Status = { if fz) 2 0

0 otherwise



Classification Problem

Linear Regression2 £ St ol 2 X}

f(z) = —2.4507508832597606 + 0.00227488 * RPM + 0.00379006 * Vibration

arravil 1.05856314e+00.
click to scroll output; double click to hide
9.19162092e-01,
6.44796277e-01,
1.058355523e+00,
7.61574640e-01,
1.05646897e+00,
1.13685352e+00,
8§.37485080e-01,
9.22427788e-01,
2.51301583e-01,
-6.32186858e-02,
2.55926977e-01,
1.43005910e-01,
4£.18186047e-01,
3.03754000e-01,
-1.35112143e-01,
1.18872240e-01,
-7.8924296%9e-02,

1.023705%73e+00,
7.49348117e-01,
B8.35784996e-01,
6.26614080e-01,
1.0526368%e+00,
1.21639013e+00,
1.1663932%e+00,
1.12018650e+00,
9.80760238e-01,
-1.14240215e-03,
2.65731543e-01,
1.50719471e-01,
-1.162458%4e-01,
-7.6B091088e-02,
-3.0949267%e-01,
-1.57109613e-01,
-9.263692B6e-03,
-8.57657338e-02,

6.05734081e-021)

9.66120163e-01,
1.03361935e+00,
6.607076802e-01,
7.88B822723e-01,
7.09256697e-01,
9.4124360%9=-01,
9.51115412e-01,
9.2009407%e-01,
1.03590281e+00,
1.75487796e-01,
-5.11098276e-02,
-6.54767525e-02,
3.180985711e-01,
2.02908173e-01,
3.78035795e-01,
-1.70750464e-01,
4.153486452-02,
1.67412730e-01,

600 - _
— line
good

500 - faulty
400 -
300 -
200 -
100 -

550 600 650 700 750 BO0  BS0 900 950




10| E£= 00|5t2| +=30] L= 2 oF A oiA?

1 EEE 02= gz!--al E-?.-—:l 7|’§-6;I'7|'? Status—{l if f(z) 20
0 otherwise
H71 Yo BEE F=H 27t HlE[5t= 712

SIE2 WME A JHsME BN OF &

f(x) = —2.4507508832597606 + 0.00227488 x RPM + 0.00379006 x Vibration



Solution

SE 2 LIEpLY XN

1.0

1
1l +e %

logit(zx) =

0.0
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Odds Ratio
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Logit function

X2| #0| FOo{N = I yo| &&= 0|23t log odds

=

_loge lOQe 1 o p)

1
= — [0ge (— — 1)
p

https://go0.gl/9a6zkS

logit(p(y = 1|z)) =log.

/\

Logit(P)




Sigmoid(=Logistic) Function

1=’ T - ™ L

Logit BH40| AABta 2 L0 B TES MBS



Sigmoid(=Logistic) Function

1
# = —ioge (g B 1) yOll 2kt 2|

1+ e—> Logistic Function =
Inverse of logit function



Sigmoid(=Logistic) Function

0| 27ts8 gLtz HE
SHEN 2 QUL ol sigmoid function 2 27

sigmoid

https://goo.gl/38SsHw



Sigmoid(=Logistic) Function

MY et4=0 A Sigmoid function2 2 Hzt
1
1 —= 1
p=o(x) = T = e = =
+ € 1 —0p T €
log, =z
1 —p
loge—— = 2 =
Ofe — Z = WoZo T W1T1 T T WpTy
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Logistic Regression0{| A
Weight t&51H7|



7Hd 4
ho(e) = g(2) = —
T p— z p—
7 I 14+e* o
where:

2 = WoTo + W1T1 T+ *** T WpTy

— 91'x

Oghg(m) S 1



100 -75 -50 -25 00 25 50 75 100



Training 6

1 ID RPM VIBRATION STATUS

1 568 585 good

h :I; _— 2 586 565 good
9 - T 3 609 536 good
1 —9 X 4 616 492 good

_I_ 6 5 632 465 good

6 652 528 good

7 655 496 good

8 660 471 good

9 688 408 good

10 696 399 good

T
0" x = woxro +wix1 + - + WpTy

y =0or 1



Cost Function -

Cost(hg(x),y)

log(hg(x))
log(1 — hg(z))

if

y=1
y =20




Cost Function

J(0) = % i Cost (hg(x(i)),y(i))
i=1

= Y P logh () + (1~ 5 ) log(1 — hy(e))]

1=1

find 6, where meiﬂ J(0) he (ZC) —




Partial derivation of cost function

1(0) = == 3" [~y (log(1 + ¢ %)) + (1 — y) (02 — log(1 + 7))

1

h@(ﬂ?) — 1+ 6_9Tx

J(0) = —% zm: {yqﬁwi — 0x" — log(1 + e—eaﬂ')}

— _% zmj {yzﬁxi — log(1 + eexi)]

—0z" — log(1 + e_ewi) = — {log e + log(1 + e_exi)}

= —log(1 + eexi).



Partial derivation of cost function
1 — . ;
- Z [yiﬁaiz — log(1 + €% )}

Z = wWoTo + wWix1 + -+ + Wy H O." J_I-ol-o:l DI_E_ I.E

— 9T«

0 - d 2 1 d
—y,0x" =y, e o R P
90, Y Yi X - In(2x) o = o da e €
5’ 01" x;,e@a?‘i ') )
8(9 lOg(l T e ) — 1+ eexi - $]h9(x )7



Partial derivation of cost function

8 ; xi_eex
| 1 Ox J — 'R ()
89]' Og( + e ) 1 + b= L 9(37 )7
i 0z i
xje _ ZU]
) )
_ Ly _ Ly
6—9:5'7’ + 6_95’3%—'_9332 6_933% 4 60
) )
ho(x') = @ e~ +1  1+e™0
1 -+ 69:10 9 h )



9.,

Partial derivation of cost function

1 «— . :
—— E [yiﬁaiz —log(1 + €%* )}
g

Or" = y;x; 20 log(1 4 %) = 2 - = T.hg
J




Weight update
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Logistic Regression=
Numpy2 11 85}7]



Data

HIO[E] Bf=tXt=Ae| F=Hat &5,

110000 -
100000
80000 4
g0000 1
70000 4
£O000
50000
40000 -

30000 4

FEAHE H2{ 2

From Data science from scratch

paid
ubpaid

- -

10



Data

X data = data[:, :2]
¥ data = np.insert(x data, 0 , 1, axis=1)

y_data = data[:, -1]
y data = y data.reshape(y data.shape[0], 1)

X data.shape, y data.shape

((200, 3), (200, 1)) Matrix Size

X dataf[:3]

array([[ 1. , 0.00861027, 0.04956583],
[ 1. s 0.02337075, 0.04956583),
[ 1.  0.03075098, 0.06195729]1])

y data:3

array([[ 1.],
[ 0.1,
[ 1.]11)



Data normalize
COJE| AAH| YT

from sklearn.preprocessing import normalize

data[:, :2] = normalize(data[:, :2], axis=0)
data[:5]
array([[ 0.00861027, 0.04956583, 1.

- 0.02337075, 0.04956583, 0.
0.03075098, 0.06195729, 1.
0.05166165, 0.06505516, O.
0.07380236, 0.07847924, 0.




Sigmoid function

1

he(r) = g(z) = e

def sigmoid(z):
return 1 / (1 + np.exp(z]‘



Hypothesis function

1
h@(ilf) — 1 —|—€_9Tx

def hypothesis function(x, theta):
z = (np.dot(-x,theta))
return shgmoid(z)



Cost function
J(0) = % zm: Cost (he(x@)),y(i))

1~ @ - - '
= > P log he(@®) + (1 — y@) log(1 — hg(a?))
m
1=1

def compute cost(x, y, theta):
m = y.shape[0]
JE (-1.0 / m )* (
y.T.dot(np.log(hypothesis function(x,theta))) + \
(l1-y).T.dot(np.log(l- hypothesis function(x,theta))))

return (-1.0 /m )* (y * np.log(hypothesis function(x,theta)) + (1-y) \
* np.log(l- hypothesis function(x,theta))).sum()



Weight update

def minimize gradient(x, y, theta, iterations=100000, alpha=0.01):
m = y.size
cost history = []

theta history = [] 9]' .= 9]‘ — Z(h@ (CBZ) — y’)x;

1=1

m

for 1in range(iterations):
original theta = theta :
for i in range(theta.size): CU?
partial marginal = x[:, i].reshape(x.shape[0], 1) J
delta = hypothesis function(x, original theta) - y

grad i = delta.T.dot(partial marginal) 7} 1
ho(z') —y
theta[i] = theta[i] - (alpha * grad i)
if (_ % 10000) == 0:

theta history.append(theta)
cost history.append(compute cost(x, y, theta))

return theta, np.array(cost history), np.array(theta history)



Predict

theta initial = np.ones([3,1])
theta, cost history, theta history = minimize gradient(
x data, y data,theta initial, 1000000, 0.01)

sum( (sigmoid(-x data.dot(theta)) > 0.5) == y data) / y data.shape[0]

array([ 0.895])

10 A

0.8 -

0.6 -

0.4

0.2 1

0.0 ~

100 -75 -50 -25 00 25 50 75 100
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sklearn.linear model.LogisticRegression

class sklearn.linear model. LogisticRegression (penalty=12’, dual=False, tol=0.0001, C=1.0,
fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver=’liblinear’, max_iter=100,
multi_class="ovr’, verbose=0, warm_start=False, n_jobs=1) [source]

penalty : str, ‘11" or 'I2°, default: ‘12’

dual : bool, default: False
solver : {'newton-cg’, ‘lbfgs’, ‘liblinear’, 'sag’, 'saga’},

multi_class : str, {ovr’, ‘'multinomial’}, default: ‘ovr’

http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html



solver : {'newton-cg’, Ibfgs’, ‘liblinear’, ‘sag’, ‘saga’},

default: ‘liblinear’ Algorithm to use in the optimization problem.
« For small datasets, ‘liblinear’ is a good choice, whereas ‘sag’ and

‘saga’ are faster for large ones.

« For multiclass problems, only ‘newton-cg’, ‘sag’, ‘saga’ and ‘|bfgs’
handle multinomial loss: ‘liblinear’ is limited to one-versus-rest schemes.

« ‘newton-cqg’, ‘Ibfgs’ and ‘sag’ only handle L2 penalty, whereas

‘liblinear’ and ‘saga’ handle L1 penalty. https://arxiv.org/pdf/1407.0202.pdf

http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html



Methods
decision function (X) Predict confidence scores for samples.
densify () Convert coefficient matrix to dense array format.

fit (X, y[, sample_weight]) Fit the model according to the given training data.

get params ([deep]) Get parameters for this estimator.
predict (X) Predict class labels for samples in X.
predict log proba (X) Log of probability estimates.
predict_ proba (X) Probability estimates.

score (X, Y[, sample_weight]) Returns the mean accuracy on the given test data and labels.
set params (**params) Set the parameters of this estimator.
sparsify () Convert coefficient matrix to sparse format.
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Confusion Matrix (=

ol

'@Eﬂ)

= =
_ AN Bpa) o X BbHo| UX| IHAE Matrix HEHE E
Prediction
1 0
1 True False
Actual Positive | Negative
Class 0 False True
Positive | Negative




Confusion Matrix (& a3

True Positive (TP)
- &M Za F@)ofl cHet ol =5 0] 5=

True — 0J|=0| St

Positive — &(1) ¢! 4% Fetual

Class

Prediction
1 0
True False
Positive Negative
False True
Positive Negative




Confusion Matrix (& a3

True Negative (TN)
- & 23t A (0)0ll et ol F0] B

Prediction
0| Oore 1 0
True - 0|=50| = T —
1 ue | False
Xl o] 740 Actual Positive | Negative
Negatlve 7-I > (O) - o Class 0 False True
Positive Negative




Confusion Matrix (& a3

False Positive (FP)

- 2 X 23F F)ofl chet oj=0] SE

False — 0J|=0| =&

—
Positive - & (1) ¢l A%

Actual
Class

Prediction
1 0
True False
Positive Negative
False True
Positive Negative




Confusion Matrix (& a3

False Negative (FN)
- X 21t AR (0)of ciet ol =50] FE

Prediction
1 0
False - 00| &
1 Tr.ug Falsg
- _ y OI 74 O Actual Positive Negative
Negatlve 7-I A(O) - OT Class O False True
Positive Negative




rloi

Confusion Matrix (

g d3)

True Positive (TP)
True Negative (TN)
False Positive (FP)

False Negative (FN)



sklearn.metrics.confusion matrix

sklearn.metrics. confusion matrix (y true, y_pred, labels=None, sample_weight=None) [source]

from sklearn.metrics import confusion matrix

y_true = [1, 0, 1, 1, 0, 1] Prediction
y_pred = [0, O, 1, 1, O, 1
confusion matrix(y true, y pred) 0 1
array([[2, O], 0
[1, 311) True
Class
1

tn, fp, fn, tp = confusion matrix(y true, y pred).ravel()
tn, fp, fn, tp

(2, 0, 1, 3)



Metrics for classification performance

- Accuracy (dztr)
- Error Rate (2X}2)
- Precision (Y T)
- Specificity (50| &)

- Sensitivity (21ZHE)

TP+TN
TP+ TN+FP+FN

Accuracy=

FP+FN
TP+TN+FP+FN

Errorrate= =(1-Accuracy)

TP

PPE’C"S“G”:ﬁ (PPV: Positive Predict Value)

TN

Spemﬁct@:m (TNR: True Negative Rate)

TP

Sensitivity= TP+FP (TPR: True Positive Rate)
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‘d=2t (Accuracy, ACC)

- ™A cijolE thH] ‘E=s5tA o=et Zi+=2| HE

Prediction
TP + TN 1 0
ACC =
TP + TN T FP + FN 1 True False
Actual Positive Negative
ACC = 1— ERR R0 | e | e




QL X2 (Error Rate, ERR)

- ™A cijo]E CiH] R E =5t o=t /2] H|E

Prediction
FP + FN 1 0
ERR =
TP+ TN+ FP + FN 1 True False
Actual Positive Negative
ERR =1 — ACC 0| e | e




import numpy as np

from sklearn.metrics import accuracy score
y pred = np.array([0, 1, 1, 0])

y true = np.array([0, 1, 0, 0])

sum(y true == y pred) / len(y true)

0.75

accuracy score(y true, y pred)

0.75



=
Dataset?| x|



= Yol Datasetl| &

14.8, 2F 0.015%

Hat Hl=E 3%

| StAFE XL

FC}EH 2

e
o
| W—

Accuracy =

2k}



https://svds.com/learning-imbalanced-classes/



Metrics for
Imbalanced Dataset




oy [
]

Imbalanced dataset

Xl dataset
X} 0= dataset

TOjst F%2| dataset

t710| £

2l =] dataset

B 59| dataset= imbalanced dataset



How to handle imbalanced dataset

- ™3t performance metricg 4% (accuracy X)
- precision, recall, AUCO| X%
- X H ot training dataset2| resampling
- oversampling, under sampling, data augmentation

- Ensemble



original
dataset

training
dataset

test
dataset

Dataset resampling

FALSE
FALSE .




Dataset resampling

- Imbalanced class’} &= 26| LC}IH

under sampling > FALSE H|O|E{& &

| — I~

- Imbalanced class’} £=o}C|H
over sampling > TRUE C|O|E{ & &&



imbalanced-learn

- scikit-learn?] imbalanced dataset 2% =

- under sampling, over sampling, SMOTE S H| &

https://github.com/scikit-learn-contrib/imbalanced-learn

pip Iinstall -U imbalanced-learn

conda install —c conda—-forge imbalanced—learn



Stratified sampling

original

dataset FALSE

training FALSE
dataset |

test FALSE
dataset




Imbalanced dataset handling process

MH| dataset¥|A] test2} dev set2 LHE (stratified)

dev set2 = under sampling EE= oversampling
EE"9-| AHkI

Test setQ & BHO| HS



U (Precision, Positive Predictive Value)

- 2’80|2ta of| 5ot H| =
=) O

go|ct ZOtLE E

Prediction
TP 1 0
PRECISON(PPV) —_ 1 True False

TP + FP Actual

Class 0 False True
Positive | Negative

Positive | Negative

https://en.wikipedia.org/wiki/Sensitivity_and_specificity



from sklearn.metrics import precision score

y pred = np.array([0, 1, 1, O
np.array([0, 1, 0, O]

y true =
sum((y pred == 1) & (y pred ==y true)) / sum(y pred)
0.5

precision score(y true, y pred)

0.5



sklearn.metrics.precision_score

sklearn.metrics. precision_score (y_true, y_pred, labels=None, pos_label=1, average="binary’
sample_weight=None) [source]

labels : list, optional

pos_label : str or int, 1 by default

average : string, [None, ‘binary’ (default), ‘micro’, ‘macro,
'samples’, ‘'weighted’]

sample_weight : array-like of shape = [n_samples],
optional



average : siring, [None, ‘binary’ (default), ‘micro’, ‘macro’, ‘'samples’, ‘weighted’]

This parameter is required for multiclass/multilabel targets. If 8None , the scores for each

class are returned. Otherwise, this determines the type of averaging performed on the
data:

‘binary’ :
Only report results for the class specified by pos_label . This is applicable only if
targets ( v_{true,pred} ) are binary.

‘micro’ :

Calculate metrics globally by counting the total true positives, false negatives and
false positives.

‘macro’ :

Calculate metrics for each label, and find their unweighted mean. This does not take
label imbalance into account.

‘'weighted' :
Calculate metrics for each label, and find their average, weighted by support (the

number of true instances for each label). This alters ‘macro’ to account for label
imbalance; it can result in an F-score that is not between precision and recall.

‘samples ' :
Calculate metrics for each instance, and find their average (only meaningful for
multilabel classification where this differs from accuracy score ).



from sklearn.metrics import precision score

y pred = np.array([0, 1, 1, O
np.array([0, 1, 0, O]

y true =
sum((y pred == 1) & (y pred ==y true)) / sum(y pred)
0.5

precision score(y true, y pred)

0.5



y true = [0, 1, 2, 0, 1, 2]

y_pred = [0, 2, 1, 0, 0, 1]

confusion matrix(y true, y pred
HH B

array([[2, O, 0], "C.

Calculate metrics globally by counting the total true positives, false negatives and

[ 1 r 0 ’ 1 ] / false positives.

‘macro’ : (LabEIE Zk %I-)Q-I rgﬂ'
[ 0 ’ 2 r 0 ] ] ) Calculate metrics for each label, and find their unweighted mean. This does not take
label imbalance into account.

precision score(y true, y pred, average='macro')

0.22222222222222221 precision_score(y_true, y_pred, average=None)

array([ 0.66666667, O. , 0. 1)

precision score(y true, y pred, average='micro')

0.33333333333333331



OZ & (Sensitivity, Recall, True Positive Rate)
- AN 378 Ho|e = 37do|2t of| F¢t v =, HtekE, JE S

gl - eholatn olso5tA =712

ne m
=
I
A0
oM

Prediction
RECALL(TPR) TP P 1 ;
— —_ — rue alse
TP+ FN P actual |1 | posiive | Negative
Class 0 False True
Positive | Negative

https://en.wikipedia.org/wiki/Sensitivity_and_specificity



from sklearn.metrics import recall score

y pred = np.array([0, 1, 1, 0])
y true = np.array([0, 1, O,
sum((y _true == 1) & (y pred == y true)) / sum(y_ true)
1.0 PECALL (TPR) TP TP :redictio;
B TP A FN B P True False
recall score(y true, y pred) Actual 1 Positive | Negative
— o - Class 0 False True
Positive | Negative

1.0



y true = [0, 1, 2, 0, 1, 2]
y_pred = [0, 2, 1, O, O, 1]
recall score(y true, y pred, average= macro )

0.33333333333333331

recall score(y true, y pred, average='micro')

0.33333333333333331

recall score(y true, y pred, average=None)

array([ 1., 0., 0.])



S04

—~

Specificity, True Negative Rate)

=g dnpt & SFo|ata QlAjslETte
-HH R EF £ S deho| 2ot H| =
Prediction
pe TN TN 1 0
— e True False
TN + F P N Actual 1 Positive | Negative
Class 0 False True
Positive | Negative

https://en.wikipedia.org/wiki/Sensitivity_and_specificity
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F1 Score (F-measure,

- Precision2} Recall| E&tst
P~

- Precisiond} Recall9]

Prediction

precision x recall 1 0

Fl = 2 — 1 True False
pT'eClSlOTl + Tecall Actual Positive | Negative

Class 0 False True
Positive | Negative

https://en.wikipedia.org/wiki/Sensitivity_and_specificity



from sklearn.metrics import f1l score
y pred = np.array([0, 1, 1, 0])
y true = np.array([0, 1, 0, 0])

pre = precision score(y true, y pred)
rec = recall score(y true, y pred)

2 * (pre * rec) / (pre + rec)

0.66666666666666663 F ::ZIW%HHSMWl*TecaH
1 precision + recall

fl score(y true, y pred)

0.66666666666666663



y true = [0, 1, 2, 0, 1, 2]
Y_Pred =10, 2, 1, 0, 0, 1]
fl score(y true, y pred, average= macro )

0.26666666666666666

fl score(y true, y pred, average='micro')

0.33333333333333331

fl score(y true, y pred, average=None)

array([ 0.8, 0. , 0. 1)



Example

PRECISON(PPY) = ———=
Prediction
RECALL(TPR) = ——+ 1P
1 0 “TP+FN P
TN TN
At 90 210 | 300 spc= TV __T!
Class 140 | 9560 | 9700
230 9770 10000




Precision - Recall Curve

- 0= 2tE ThresholdE H3}A|7q Precision/Recall &8

- A 4= 2 I F-&5H A8 7ts

2-class Precision-Recall curve: AP=0.88

1.0 1

0.8 1

0.6 1

0.4 1

0.2 1

0.0 T T T T
0.0 0.2 0.4 0.6 0.8

1.0



import numpy as np

from sklearn.metrics import precision recall curve

y true = np.array([(0, 0, 1, 1])

y scores = np.array([0.1, 0.4, 0.35, 0.8])

precision, recall, thresholds = precision recall curve(
y true, y scores)

precision

array([ 0.66666667, 0.5 , 1. , 1.

recall

array([ 1. , 0.5, 0.5, 0. 1)

thresholds

array([ 0.35, 0.4 , 0.8 1)



Precision - Classification Report

- Classification =H|0| A St Precision, Recall, F1 Zi} &

precision recall fl-score support
class 0 0.50 1.00 0.67 1
class 1 0.00 0.00 0.00 1
class 2 1.00 0.67 0.80 3

avg / total 0.70 0.60 0.61 5



from sklearn.metrics import classification report
y true = [0, 1, 2, 2, 2]

y pred = [0, O, 2, 2, 1]

target names = ['class 0', 'class 1', 'class 2']

print (classification report(y true, y pred, target names=target names))

precision recall fl-score support
class 0 0.50 1.00 0.67 1
class 1 0.00 0.00 0.00 1
class 2 1.00 0.67 0.80 3

avg / total 0.70 0.60 0.61 5



Suppo

recall fl-score

precision

I e e arar

EHEOTNG S

AR

R

ﬁ_ﬁ_ﬁ_.ﬂ.ﬂuﬁ_ﬁ_ﬁﬁ_ﬂu

_H__H__H__H__H_.I_%_H__H__H_

Eﬁﬁ?.._ﬁﬁﬁlﬁl

xlﬂﬂﬂﬂﬂﬂﬂﬂﬂ
.T:H__H___I_H_H__H__H__H__H_.I_

H_lﬁﬁ_ﬁ_ﬁ_ﬁ_ﬁ_ﬁ_ﬁ_

_H_E_H__H__H__H_.I__H__H__H_

R E

Confusion matri

O CN oD O LN Ch WD < M
o an OO O O O OGN O

SRR ®

& o B U WD M 00O

o
_._ulﬂ_r_r_r__.l_r_r_r_r_r_
L

.97 .97

@.97

g / total



TEAML/AB

Human knowledge belongs to the world.



Logistic Regression Classifier

Director of TEAMLAB
Sungchul Choi




algr-=S0|
Trade- off?




Trade-Off 2tA| 7}

= X OO0

xIEE S T A=
MERO} OF OfL}




ROC Curve

Receiver Operation Characteristics




ROC curve (24X} 2F E4?)

- Recelver Operating Characteristics

- 2Kt MlA tiE F glol o|OjX| & EA5t= = dX| O] 20 M Al%}
- Basic Principles of ROC Analysis (Charles Metz, 1978)

- 258719 AAIX|(Threshold)& =¥, QIZE-EO0| 7 H|EE T A5}

- LogReg, NBl} 22 Class?| 0= =&0| L= 220 AR 7ts
> Decision Tree €2 4 4 AME2 st =do| €@



Prediction Probability

Frobability of
disease 1.0 -

E:z+_£.z'

1+ %"

Piylx) = T
0.8 4

0.6 4
0.4 4
0.2 4

0.0 <




Prediction Probability

100%

80% -

B0% -

40% -

True Positive Rate
(Sensitivity)

0%

20% 4 |

0%

20% 40% 60% 80%

False Positive Rate
(1-Specificity)

100%

Positive
Data | Class | Prediction
(Threshold)
1 P 0.9
2 P 0.8
3 N 0.7
4 P 0.6
5 P 0.55
6 N 0.54
7 N 0.53
8 N 0.51
9 P 0.5
10 N 04

TP
S tivity(TPR) = —
ensitivity(TPR) BT FN - P
FPR = 1 — Specificity(TNR)
_ 4 TN _ . TN
- TN+FP N
Prediction
1 0
1 True False
Actual Positive Negative
Class 0 oloe e
Positive Negative

From: https://www.ncss.com/software/ncss/roc-curves-ncss/




rrediction

Prediction Probability

True Positive Rate

(Sensitivity)

False Positive Rate
(1-Specificity)

1 0
1 True False
Actual Positive Negative
Class O False True
Positive Negative
1P| 09 | 1] 0] 5 | 4] 02 0
2|P| 08 | 2 | 0| 5 | 3 | 04 0
3INJ 07 [ 2 | 1| 4 | 3 | 04 0.2
4P| 06 | 3 [ 1| 4| 2| 06 0.2
5/P| 055 | 4| 1| 4| 1| 08 0.2
6|N| 054 | 4 | 2| 3 | 1 | 08 0.4
7|N| 053 | 4 [ 3| 2| 1| 08 0.6
8 N| 051 | 4 | 4] 1 | 1 | 08 0.8
9|P| 05 | 5] 4| 0 | 1 1 1
10]N| 04 | 5] 5] 00 : :




Prediction Probabilit

1GDDF'E ! . ! L ! ! ! L : ! . L : . ! ._'___I — L : TP TP
'  Sensitivity(TPR) = =
_ YTPR) = 75 FN = P
80% S _ TN TN
/ FPR = 1 — Specificity(TNR) =1 ————==1——
. - " TN+FP N
.8 _,f/
c _ /
ee > 60%- . L.
S35 Prediction
- 4o
.g g |/ |
a o ao%d{ / i 1 0
vl i/ :
S
= 1 True False
205 |/ Actual Positive Negative
I' : Class o False True
| : Positive Negative
0% o
0% 20% 40% 60% 80% 100%

False Positive Rate

(1-Specificity) From: https://www.ncss.com/software/ncss/roc-curves-ncss/



AUC, Area Under Curve T 7

" 7
- ROC curve?| s}Eto] Ho|= <o|noj 08} 7
St :
=

0.6

- ROC curveg th=¢gt Single

—— NetChop C-term 3.0
— TAP + ProteaSMM-i

S
=

True positive rate

AL o ProteaSMM-i
o X = .
- 4 E SHSE JE E A e
2 A o M2 [FAlS
= T8 &2 35 #AT |
0 [; 0.2 | 0.4 | Dl,ﬁ- | {_‘Jl.}S | I

False positive rate

from Wikipedia(https://goo.gl/itMyAR)

See - http://www.dataschool.io/roc-curves-and-auc-explained/



y = np.array([1l, 1, 2, 2])
scores = np.array([0.1, 0.4, 0.35, 0.8])
fpr, tpr, threshoclds = metrics.roc curve(y, scores, pos label=2)

fpr

array([ 0. , 0.5, 0.5, 1. 1)

tpr

array([ 0.5, 0.5, 1. , 1. 1)

thresholds

array([ 0.8 , 0.4 , 0.35, 0.1 1)



roc_auc = metrics.auc(fpr, tpr)
roc_auc

0.75

plt.figure()
lw = 2
plt.plot(fpr, tpr,

lw=1lw, label='ROC curve (area
plt.plot([0, 1], [0,
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel( ' True Positive Rate')

plt.title( ' Receiver operating characteristic example')

plt.legend(loc="lower right")
plt.show()

$0.2f)"

% roc_auc)

1], color='navy', lw=lw, linestyle='--"}]

Receiver operating characteristic example

10 —
;-ﬂ"
-!"#’
0.8 - o
o -
L L
E 0.6 - ,’f
= -
1A
g .
u 0.4 f,f
= Py
,_..r""
0.2 1 o
-
&
- g = ROC curve {(area = 0.75)
0.0 T . : :
0.0 0.2 04 0.6 0.8

False Positive Rate
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Multiclass Classification




&8l

Multiclass classification

- £ ) ojMte] SHAE 7Y £F K

- QaIX|, Afn} E by

- ZEMELF7151100]7ts,[110] =7t

Multilabel classification
- A HIERHO|X| 22 £4S oS
- S M JIsStEF 2> [110]

= 7
- MEI|AI 25 Oft MO0 2= 5> AFEX/AHO|

Source from - https://goo.gl/FStnzy



Approach

A Source from -

One_VS_A" A https://goo.gl/iZQaK65
- X
- m7l2| classZ7t EXE I, | AA Xy x
o o 2
S| ADOIC} classifier A4/ X
>
One-vs-One X

- 2 WM 9| ClassOIC} ClassifierS 44, |15 MEHA]
Classifier M1Ei2| £ HE Soll 2%
- & m@m-1) / 2 7 2F29| Classifier 444, HE = Up
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Sigmoid function for multiclass

One vs All Approach



Softmax function for multiclass

B E dass®| EFE S 12 Generalize €
(2) o j=1.23.. K
o(z); = or j=1,2,3,...,
: 25:16%

where : o(z); = probability of class j
K — last classification class



Softmax Function
Class’7I &7l & O
P;
1— P,

P.
= logit(P;) = log, <1 jP ) —z2=0"x
Y

ClassZ} K7H & [}

P; P;

—L = Jogit(P;) =log, | =L | = 2, =x"6,
P ogit(P;) = log, (PK) zi =% 0,



P; |
— Zj = i — % =
K | K K
_ Z; o 2
DR PP B
71=1 71=1 71=1
Softmax s | s
Function = Zez” = (. ZPJ = 1)
j=1 j=1
e~J

http://willwolf.io/2017/05/18/minimizing_the_negative_lo
g_likelihood_in_english/




Softmax

Function




Softmax Fucntion

e~ e~
P' — —
J K K
e 3 e
01 ] w10
02 Wa(
9 _— p—
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T
ij

E €XT9j

j=1

Softmax function &=







GXTQJ'
P; =

£
gaj2oict o 7f =2




D>

5 exp(00)T )

Cexp(0) T )T
exp(6® T z)

lexp(0) )






Maximum Likelihood Estimation

arg ]anax H P(y(’i) |$(i) . 6)
i=1

(1 lfy:fU]
0 if y# v,

V1 V92

p'(1—p) ™ = pi'p; ---pf;j where v; <

\

0 1=1

Reference from -

1~



Negative Log-LikeIihood

L:ﬁ OIMONY MHP(W:‘
1=1

1=1 1
m K | /U.J. m K |
—log L = —logH pr) R ZZ’UM logpgf")
i=1 =1 i=1 j=1

X(i)TQj

1 if @ is label j S R—
0 if y\* is NOT label j Z € 7

Reference from -

1 Ir—e~3 .



Minimize Cost Function

m K (%)
. . 6 j
| = — v;: log p'? where p'*) =
— ij 108D, P; = ¢ .
i=1 j=1 3 e
j=1

Jl <> 1) derivate of Negative-Log Likelihood
0z 2) derivate of Softmax Function

Reference from -

1 Ire~; .



Minimize Cost Function

K K
ol :_Zv”(’?logpj :—Zv--i% (_.dlogef(az) _ 1 df(a:))
0z; o Y0z i Y'p; 0z ' dx f(z) dx
-
op; ,;::1 e g’-hj — h/'gj . & ~
822 = 9z, :>f3/': 2 [hj]QJ (Wheregj:eﬂ,hj:Ze’“)

k=1



if c=

H—<
apj L k;z::1 <
0z. Oz,
if c#J

H—<—
apj k§1 et

e*ih; — e*ce*
Wiy
0—e* e
Wiy

dy _ d(e”)

dr

e h; — e®e

hij  hy

Minimize Cost Function
i 2 (daz2
=€

= p;j(1 —pj)
. ‘p ezj
Z]K:1 €~

e*i e~




Minimize Cost Function

K K
Ol :_Zvijiapj :_ﬁapz'_ v; Op;
0z =1 Pj 0z p;i 0% vy Pj 0z;
() K (O
— __pz(l pz’) — _J( pjpz)
‘ j#i 1
K K
= —V; + U;p; + Z UiPi — —U; + Z U;Pi
e~i J#1 Jj=1

— EK_ . K
J=1 = D; — U; ( Z?Jj — 1)



Update weights

61 _’wlo w11 ce wlj_ |
Whj = Wkj — Qg N LR R Where{@ index of class
k7 ; ; L j index of feature
al azk _wko W1 - wkj_
— ks CM@Z]{ @wkj

Wij — a(Pr — Vk)T;

= Wy; + a(vr — Pr)T;

= Wgj = Wkj + & Z(’U;(;) B pl(;))ajy)
1=1



Cross-Entropy Loss Function

Loss Function® Cross-Entropy FunctionO|2t1l £ &

- Entropy= 55 242 et 4R2| = BFEH2=E

e ™ 1

EHots K| > &2 £8 F20 £7 Hg

n

H(p) = — > pilogp
1=1
e |'here are n distinct events.

e Fach event ¢ has probability p;.
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Iris dataset

1

Multiclass dataset

HE ROIM 37[X] X F/FS OfC|of]

0]
o
gol= X & H= =

Udt™M o 2 FSAH| X} Fisher” f Mietst h|O|E| Mo =2
Fisher's Iris dataset2} 1= £

HEX 2l
3B X
P

Sk M

https.//thebook.io/006723/ch04/01/



Iris dataset

1y ol o
Species "f't;j'qlﬂ =, se;ccos:f, versicolor, virginic Factor
a Ml Z7HX| €% &= StLt
Sepal.Width * 2 EOf LHH] Number
Sepal.Length S 8EXIo] Z0] Number
Petal.Width = 29| L4 H] Number
Petal.Length = Qo] 40| Number

https.//thebook.io/006723/ch04/01/



Iris dataset

IRIS dataset

Iris Virginica



| O] Ef
Et e

Factor

Number

Number

Number
Number

o|oj

. setosa, versicolor, virginic

=
o

a M| 7tX| €% S ofLt

— e
A K —

2o L

AL
x =

of

0] 14|
Z1
=

a1
=x
J1 0
=
a4
=x

IT
ol
I

g0
md

Tl

Species

Sepal Width

Sepal.Length

Petal.Width
Petal.Length

from sklearn.datasets import load i=i-

load iris()

datasets

datasets[ "data"]

X data[:5]

X data =

0.21,
0.21,
0.21,

1.4,

3.5,

array([[ 5.1,

0.2],
0.211)

datasets[ "target"]

data =
y data

Y_

dataset

r

o

o

Load

o

o

o

o

o

(=

o

o

o

LS

o

L

o

L

o

L

(=

I

0

r

0

array([0,

r

L L L L

O - 1 (N (N

r
r

By ey

r

0
1
1
2
2

r

By ey

— — (N (N

0,

r
r

L L

r

0
1
1
2
2

r

L LY LY

O~ NN

r

r
r

LY LY

r

0
1
1
2
2

r
I

L L L

O - = (N N

L] L] L L L]

O - 1 (N (N

Ry Ry By ey Ry

O = NN

L] L L L L]

O HH NN

L L L L L

O — NN

.
Y =
o

O ~ N N

.y L L L .y

O =~ NN O

L My L L L

O = = AN AN O

L L L L L

O — = AN AN 0N

LI N
O = =N

N L L
O " = N O

L L L L L

O = =N

.y L L L .y

O NN

.y L L L .y

O O 1 = (N O\

L L T e S

O O =N O
LI N e

O O o 0N O\
L A



Softmax function

p; =

€XT9j
K
> ex'0
def softmax(z): :
_ 7=1
e = np.exp(z)

p = e / np.sum(np.exp(z), axis=1l).reshape([-1,1])
return p



Cross Entropy

m K B m K |
gt o [T T = = 3 v o

def cross entropy function(y, x, weights):
z = X data minmax.dot(weights.T)
result = - np.sum(
np.sum(
(y * np.log(softmax(z))), axis=1l).reshape((-1,1))
)

return result



Weights update

Ol
J
= Wkj — &
& 0zk 8wkj
for in range(iterations): = wr; — a(pr — Vk)T;

original theta = np.copy(theta)
for k in range(number of classes): n
for j in range(number_of_weights)::$1Wv:?wm_%aizx@?__pg»wy)

= wi; + a(vr — pr)x;

partial x = x[:, J] i1
partial entropy = y - softmax(x.dot(original theta.T))
theta[k][J] = original thetalk][]J] + (

alpha* partial entropy[:,k].dot(partial x.T) ) /150



Weights update

Ol
J
= Wkj — &
& 0zk 8wkj
for in range(iterations): = wr; — a(pr — Vk)T;

original theta = np.copy(theta)
for k in range(number of classes): n
for j in range(number_of_weights)::$1Wv:?wm_%aizx@?__pg»wy)

= wi; + a(vr — pr)x;

partial x = x[:, J] i1
partial entropy = y - softmax(x.dot(original theta.T))
theta[k][J] = original thetalk][]J] + (

alpha* partial entropy[:,k].dot(partial x.T) ) /150



One Hot Encoding for Y

y data = y data.reshape([-1,1])

y data[:3]

array([[0], 1 if ¥y is label j
[01, where Vij . N .
[011) 0 if y is NOT label ;

from sklearn.preprocessing import OneHotEncoder
enc = OneHotEncoder()

enc.fit(y data)
y data = enc.transform(y data).toarray()

y data[:3]

array([[ 1., ©0., 0.],
[ 1., 0., 0.],
[ 1., 0., 0.11)
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Confusion matrix for multiclass

- Class®8 & True Positive2} Error2 &
-FN ¥7|&  FPE 7|2 & 3t =il

Prediction
A B C D E
A TP_A E_AB E_AC E_AD E_AE
B E_BA TP_B E BC E_ BD E_BE
Actual C E_CA ECB TP_C ECD E_CE
D E_ DA E_ DB E_DC TP_D E_DE
E E_EA E EB E_EC E_ED TP_E




Accuracy for multiclass

- ™A ClassT d2ts| YX|gt Class?| 7l
Prediction
A B C D E
A TP_A E AB E AC E AD E AE
B E BA TP B E BC E BD E BE
Actual C E CA ECB TP C ECD E CE
D E DA E DB E DC TP D E DE
E E EA E EB E EC E ED TP_E




Precision for multiclass
- TP/ (TP + FP), ofLte| Eej AL} LFHX| Column el
- Precision A=TP A/(TP A+E BA+E CA+E DA+E EA)

Actual

Prediction
B C D E
A E_AB E_AC E_AD E_AE
B TP_B E BC E_ BD E_BE
C ECB TP_C ECD E_CE
D E_ DB E_DC TP_D E_DE
E E EB E_EC E_ED TP_E




Recall for multiclass
- TP/ (TP + FN), StLt2| Sef 22} LIHX| Row= el 2
-Recall A=TP A/(TP_A+E AB+E AC+E AD +E_AE)

Prediction
A B C D E
A TP_A E_AB E_AC E_AD E_AE
B E_BA TP_B E BC E_ BD E_BE
Actual C E_CA ECB TP_C ECD E_CE
D E_ DA E_ DB E_DC TP_D E_DE
E E_EA E EB E_EC E_ED TP_E




Examples

Prediction

10

304

289

10

289

264

11

300

254

261

13

263

10

293

298

10

Actual




TEAML/AB

Human knowledge belongs to the world.



Multiclass with sklearn

Multiclass Classification

Director of TEAMLAB
Sungchul Choi




digit dataset

- Optical Recognition of Handwritten Digits Data Set
- & 2NE 2 £XIE 258 Hlo|E A

- MNISTZ} ™=, scikit-learn 0l|A| 8 by 8 image H|&

https.//thebook.io/006723/ch04/01/



MAERE




Data loading

from sklearn import datasets

digit dataset = datasets.load digits()

digit dataset.keys()

dict keys([ data’', 'target’', 'target names', 'images’', 'DESCR'])



array([I[

|
[

[

digit dataset[ "data” ].shape

(1797, 64)

o O o

o O O~

Data loading

digit dataset[ "data’]

0.
0.
0.

o

10.

digit dataset["target names"”]

array([0,

1,

2,

3,

4,

3,

6,

1,

10.
16.

12.
12.

8,

21)

0.,
0.,
9.,

0.,
0.,
1.,

o

o



Data loading

digit dataset["images"][0]

array([[ O0., 0., 5., 13., 9., l., 0., 0.1,
[ 0., 0., 13., 15., 10., 15., 5., 0.1,
[ 0., 3., 15., 2., 0., 11., 8., 0.1,
[ 0., 4., 12., 0., 0., 8., 8., 0.1, fromlmatplot}i? import pyp}ot as plt
[ 0., 5., 8., 0., 0., 9., 8., 0.1, plt.imshow(digit dataset["images"][0])
( 0., 4., 11., 0., 1., 12., 1., 0.1, PLi-ahowW()
[ 0., 2., 14., 5., 10., 12., 0., 0.1,
[ 0., 0., 6., 13., 10., 0., 0., 0.11)




Multiclass for LogisticRegression Class

class sklearn.linear model. LogisticRegression (pena!ty=72’, dual=False, tol=0.0001, C=1.0,
fit_intercept=True, intercept_scaling=1, class_weight=None, random _state=None, solver=’liblinear’, max_iter=100,
multi_class="ovr’, verbose=0, warm_start=False, n_jobs=1) [source]

multi_class : str, {"ovr’, ‘multinomial’}, default: ‘ovr’

Multiclass option can be either ‘ovr’ or ‘multinomial’. If the option chosen is ‘ovr’, then a
binary problem is fit for each label. Else the loss minimised is the multinomial loss fit
across the entire probability distribution. Does not work for liblinear solver.

New in version 0.18: Stochastic Average Gradient descent solver for ‘multinomial’ case.



Multiclass for LogisticRegression Class

Inputs (X) logits (Y) S(Y) One-Hot Encoding

w X +b S(Y) DES, L)
— —
Linear Model Softmax Cross Entropy

Multinomial Logistic Classifier

@ dataaspirant.com
http://dataaspirant.com/2017/03/14/multinomial-

logistic-regression-model-works-machine-learning/



Multiclass for LogisticRegression Class

from sklearn.linear model import LogisticRegression

logreg ovr = LogisticRegression(multi class="ovr")
logreqg softmax = LogisticRegression(multi class="multinomial”, solver="sag")

logreg ovr.fit(X train, y train)
logreqg softmax.fit(X train, y train)



One vs One or One vs Rest Classifier

User guide: See the Multiclass and multilabel algorithms section for further details.

multiclass.OneVsRestClassifier (estimator], ...])] One-vs-the-rest (OvR) multiclass/multilabel strategy
multiclass.OneVsOneClassifier (estimator], ...]) One-vs-one multiclass strategy
multiclass.OutputCodeClassifier (estimator], ...]} (Error-Correcting) Output-Code multiclass strategy

OneVsRestClassifier(logreg_ovr).fit(X_train, y_train)

OneVsOneClassifier(logreg_ovr).fit(X_train, y_train)
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0 A2{'do] Sh WHE

Gradient descent based learning
Probability theory based learning
Information theory based learning

Distance similarity based learning



o A2do] BH wHE

- Probability theory based learning



Probability

- ol 2t
P(X) count(FEvent_X)
count(ALL_FEvent)
- E_J—'T_Eg ﬂ- ﬁt(;;;(::/e/iqoo.gI/D9VCSL
o0 FijusX = u= flz)
P(—oo<:1;<o<>)/ f(x)dx =1 /(//\
—C .%;; b ;3! r
Source:

https://goo.gl/DVNSH2



Basic concepts of probability

0< P(E)<1

N
P(S) = Z P(E;) =1 if all E; are independent

P(AN B) P(AUB)  P(A°) =1— P(A)



Conditional probability

g (7

ANB




Conditional probability

P(A) = {set of odd number}
P(AN B)

P(B) P(B) = {less than 4 in a dice}

g (7

ANB

P(A|B) =
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Bayes’s theorem

| SHIOIE

ol

T

(given)Of|A| A}
H| = 30| ys, H|0|=F9]

=
=

Ool_l-gl-

280

TS Soll AlZE =HER

7

M g

}

A



Queen card
game



*2>




Wl

Wl

Probability updated

Wl

19
30




Probability updated




Bayes’s theorem

P(AN B)
P(A|B) = P(]’;‘(;)B) PIBIA) = =54

P(AN B) = P(B)P(A|B) = P(A)P(B|A)

" P(ANB) P(A)P(B|A)
PAB)="pB) = pPB)




Cookie Quiz

27| & AX0| ok sioh A #Hmj AR0l=
HL 2} 27| 3070t X2 7] 10747 U1, F
HE| aAXoll= 2 7171 20704 At Yol F7|5
= oid 27171 Hr'-' ct F7[0[Ct. O] 7|7}
aAX 10N LIRS =&

Source: https://goo.gl/GzopZy



Cookie Quiz

27| £ 20| UCtDn StCh A HE Q2o0f= HEE2F 37| 3070QF X2 37| 10747t Y1, F HEY 120 Z
717 20744 QACt. @lel 7|18 HA=H sl F7[7F videt f7[0Ict of £7|7F AKX 10N Ligts 2E2?

-

P(AN B P(A)P(B|A
P(Choco) P(AB) — (P(B)>: (;(é)l)

P(Vanilla)
P(B1)
(

T

B2)

Source: https://goo.gl/GzopZy



Bayes’s theorem

A

Ao

As

HlO[E{7t T e =

(Evidence)

=
=

H 1is Class
D 1s Data



Bayes’s theorem

P(C)P(D|H)

P(H|D) = ——5 1

A Ao As

P(AiNB)+ P(A;NB)+ P(AsN B)

P(B) = P(A))P(B N A1) + P(A)P(B N Ay) + P(A3)P(B N As)

P(AN B) = P(B)P(A|B) = P(A)P(B|A)



Example

Source: https://goo.gl/GzopZy



_ PO)P(DIH)
- P(D)

VP(BN Ay) + P(A))P(B N Ag) + P(A3)P(B N As)

Source: https://goo.gl/GzopZy
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Viagra 2%



number

viagra

viagra

spam

1

1

1

-

O |IN|IOOLn|A~lWIN

—
-

=[O OO |O|O|O O

OO |O|O|O|O|O

OO O0O|IO0O|O|—=|O O

| 22| O[O |O|O|O




P(spam|viagra) =

Viagra 23 ZE{7|

P(spam)P(viagra|spam)

P(viagra)

P(viagra N spam)

P(viagra) =

count(viagra)

count(ALLgsqumples)

number viagra spam number viagra spam
1 1 1 11 1 0
2 0 0 12 0 0
3 0 0 13 0 0
4 0 0 14 1 0
5 0 0 15 0 0
6 0 0 16 0 0
7 0 1 17 0 0
8 0 0 18 0 1
9 1 1 19 0 1
10 1 0 20 1 1
P(C)P(D|H)
P(H\D) =
count(spam
P(spam) = (spam)

count(ALLsampies)




| count(viagra) count(spam)
Plviagra) = count(ALL ) Plspam) = ALL

samples COUTLt( samples)
# P({Viagra)
p_viagra = sum({np data[:, 0] == 1) / len(np data) P(viagraﬂ spam)
p spam = sum(np data([:, 1] == 1) / len(np data)
p v cap 8 = sum((np data[:, 0] # P(spam [ viagra) 1] == 1)) / len(np _data)
p nv cap s = sum((np data[:, P-SPa™ " (P.v.eaps /pspi 1] == 1)) / len(np data)
# P(spam [ viagra)
p spam * (p v cap s / p spam ) / p viagra P P(vi

, spam viagra|spam

0.3 P(spamlviagra) = (spam) P(viagra|spam)

P(viagra)
# P(spam [ ~viagra)
p spam * (p n v cap s / p spam ) / (l-p wviagra)

0.2142857142857143
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25| AHES M2l

SO o Thof



Feature®| 3H%t

P(spaml|viagra)

¥
P(spam|viagra, hello, lucky, marketing...)

_I

Heot S W, =UF =E2| Hsl



Multivariate multiplication rule

P(Y N XN Xs)
P(X1 N X>)
P(Y N X1 NXs) = P(Y|X1, X2)P(X1 N X3)

P(Y|X1,X5) =

P(X1, Xo, X3, ... X0n)
= P(X1)P(X5|X1)P(X3| X1, X2) ... P(Xn|X1 ... Xu_1)



Problems

. PRCELES

- Feature?| X} 0| Z7}5}H Sparse VectorZ| 4/d
> 250] 00| £|= #40| S0



Naive Bayes Classifier



Joint Probability

P(ANB)=P(A)P(B) if A and B are independent

P(Y)P(X, N X,|Y)
P(X1NXs)
P(Y)P(X1|Y)P(X2]Y)
P(X1)P(X2)

PY|X1NXy) =




Naive Bayes Classifier

PY)P(X1NXs]Y) P(Y)P(X;|Y)P(X5]Y)

P(Y’Xl M X2) — P(Xl N X2) - P(Xl)P(XQ)

P(Y.|Xq1,...,X,) = =1 Y, is a label




Issues

(Yc> T Z lOg P(XZ‘YC)

1=1

Y. is a label



Jiot

50| 02! H=0| EXT > TN

count(X NY)+k
count(Y) + (k x |number of class|)

P(X|Y) =

n

log{ P(Ye) | [ P(XiYe)} = log P(Ye) + ) log P(Xi[Ye)
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Dataset — German Credit
- CHE AZ|Q712 Ol 7LE o|S5t= 25|
- HIO|E{ & NBO| == ZITHSIHA| tHet
- Binary OIO|E{ S &2 O|F0{ %l C{

T
>
~
in|
o
H



Fraud

true

none
guaranuor
one
1one
none
none
none

none

~nannlicant
coapplicant




Preprocessing

History CoApplicant Accommodation

0 cumrent none own

1 paid none own

2 paid none own

- One-Hot Encoding
|

4 arrears none own

x df = pd.get dummies(df)
x df.head()

History _arrears History current History_none History paid CoApplicant_coapplicant CoApplicant_guarantor CoApplicant_none Accommodation_free Accom

0 0 1 0 0 0 0 1 0
1 0 0 0 1 0 0 1 0
2 0 0 0 1 0 0 1 0
3 0 0 0 1 0 1 0 0



X data = x _df.as matrix()
X _data

array((ro, 1, 0, 0, 0, 0, 1, 0, 1, 01,
(¢, o, ¢, 1, 0, 0, 1, 0, 1, 0],
(¢, o0, 0, 1, 0, 0, 1, 0, 1, O],
(¢, ¢, 0, 1, 0, 1, 0, 0, 0, 1],
(1, o, ¢, o, 0, 0, 1, 0, 1, 0],
(1, o, ¢, 0, 0, 0, 1, 0, 1, 0],
(¢, 1, ¢, 0, 0, 0, 1, 0, 1, 0],
(1, o, ¢, o, 0, 0, 1, 0, 1, 0],
(¢, 1, o, o0, 0, 0, 1, 0, 0, 17,
(¢, ¢, 1, 0, 0, 0, 1, 0, 1, O],
(¢, 1, ¢, 0, 1, 0, 0, 0, 1, 0],
(¢, 1, 0, 0, 0, 0, 1, 0, 1, 0],
(¢, 1, ¢, 0, 0, 0, 1, 0, O, 1],
(¢, 0, 0, 1, 0, 0, 1, 0, 1, 0],
(1, o, 0, 0, 0, 0, 1, 0, 1, 0],
(¢, 1, ¢, 0, 0, 0, 1, 0, 1, 0],
(L, o, ¢, 0, 1, 0, 0, 0, O, 1],
(1, o, 0, 0, 0, 0, 1, 1, 0, 0],
(1, o, ¢, o, 0, 0, 1, 0, 1, 0],
[, 0, 0, 1, 0, O, 1, 0, 1, 0]], dtype=uint8)



Modelling

P«)Q)'ii-FK)(AYZ)

P(Y.|Xq,...,X,) = =1 Y, is a label

1 P(X))

1

P Y True = sum(Y data==True) / len(Y data)
P Y False = 1 - P Y True

P Y True,P Y False

(0.29999999999999999, 0.69999999999999996)



Modelling

iXx Y True = np.where(Y data) ()I

ix Y False = np.where(Y data==False) Y_ Index

ix Y True, ix Y False

((array([ O, 3, 5, 9, 11, 12]),),

(axrray([ 1, 2, 4, 6, 7, 8, 10, 13, 14, 15, 16, 17, 18, 191),))

p X y true = (x data[ix Y True].sum(axis=0)) / sum(Y data==True)

p x y false = (x data[ix Y False].sum(axis=0)) / sum(Y data==False)

p X y true, p x y false P (X l‘YC)

(array([ 0.16666667, 0.5 , 0.16666667, 0.16666667, O. '
0.16666667, 0.83333333, 0. , 0.66666667, 0.33333333]),

array([ 0.42857143, 0.28571429, 0. , 0.28571429, 0.14285714,
0. , 0.85714286, 0.07142857, 0.78571429, 0.142857141]))



Classifier

# History arrears History current+History none History paid CoApplicant coapplicant
x test = [0,1,0,0,0,1,0, 0,1,0]

p vy true test = P Y True + p X y true.dot(x test)
p v false test = P Y False + p x yv false.dot(x test)

p vy true test , p y false test

(1.6333333333333333, 1.7714285714285714)

p_y true test < p y false test

P(Y=1|X)2| &1} P(Y=0|X)2| E+& H|u

True
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Multinomial Naive Bayes

- X2}0| BinaryZ} OfL|2} 1 O|&9] Zt2 7IX|= &=H|



Text?| Feature E%1?

2 X} = Feature



2 XI£ VectorZ — One-hot Encoding

SILIC| THO{E Vector?| IndexE 214,

Rome

Rome
Paris
Ltaly

France

i

Paris

4

)

CHO =XHA| 1

word V

e

0



Bag of words

CIHO{E R QIH A S HO{sH A
ot & (EE= A1) tHo{e] 7H+E Vector2 ®Y

the dog Is on the table

1 1 0 1 1 1
are cat dog is now on table the



e~
ot

23

T =2

Bag of words

o|cl A

L " 11—

S H 0ol A
(EE= =A1)2| THo2| 7|+E VectorE &

are | call [from [ hello |home | how | me | money | now |tomorrow |win |you
1 |0 |0 1 0 1 0 |0 0 0 0 |1
0 (0 |1 0 1 0 0 |1 0 0 2 |0
0 (1 0 0 0 0 1 |0 1 0 0 |0
0 (1 0 1 0 0 0 |0 0 1 0 |1

-~
o



CtA] SOL71A.



Multinomial Naive Bayes

P(Y,) '17:‘7'[1 P(X;|Yy,)

L, Xp) = Y. is a label

7)2 Al



Multinomial Naive Bayes

..... Xn) = i Y. is a label

Likelihood 2} H}&!



Multinomial Naive Bayes

th(xz-,d - YC) —+
ZNdEYC +a-V

*x_i: Aword from the feature vector x of a particular sample.

>tf(xi,dEy_c): The sum of raw term frequencies of word x_i from all documents in the
training sample that belong to class y_c.

>SNdey _c: The sum of all term frequencies in the training dataset for class y_c.

«a: An additive smoothing parameter (a=1a=1 for Laplace smoothing).

*V: The size of the vocabulary (number of different words in the training set).

http://sebastianraschka.com/Articles/2014_naive_bayes_1.html



Multinomial Naive Bayes
O L L —

Training 1l Chinese Beijing Chinese
2 Chinese Chinese Shanghai C
3 Chinese Macao C
4 Tokyo Japan Chinese J
Test 5 Chinese Chinese Chinese Tokyo Japan ?
tf(r;,deY,.)+a
> Naey, +a-V
P(Ye) 11 P(X5]Ye)
P(Y.|X1,...,X,) = =1

[1 P(X:)

i=1 http://slideplayer.com/slide/10998986/



Multinomial Naive Bayes

Test 5 Chinese Chinese Chinese Tokyo Japan ?

Conditional Probabilities:
P(Chinese|c)= (5+1)/(8+6)=6/14 =3/7

P(Tokyo|c) = (0+1)/(8+6)=1/14
P(Japan|c) = (0+1)/(8+6)=1/14
P(Chineselj)= (1+1)/(3+6)=2/9
P(Tokyolj) = (1+1)/(3+6)=2/9
P(Japan|j) = (1+1)/(3+6)=2/9

P(Ye) ﬁ P(X;|Ye)
P(Y | X1,..., X)) = i=1

-H1 P(X) http://slideplayer.com/slide/10998986/

1=
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Gaussian Naive Bayes

Category Ll|O|E{7} O}l 320 NB 2] H-&
=

Continuous H|O|E{2]| MES 2ol yo| ==& Ent
= X2 (gaussian)2 2 7}7d gl

25 Tk & g2 oF U4 x 7t L= =EE NBS



Gaussian Naive Bayes




Person
male
male
male
male
female
female
female

female

Gaussian Naive Bayes

1

(z; — py,)?

P(x; |

height (feet) weight (lbs) | foot size(inches)
& 180 12
592 (51" 190

5.58 (5'7") 170 12

592 (5117 165 10

> 100 B

5.5 (5'6") 150 8 Person
5.42 (55" 130 7 male
5.75 (5'9%) 150 g female

Y,) =
\/ QWJ%C

exp

Y

2
QO'YC

mean (height) | variance (height) | mean (weight) | variance (weight) | mean (foot size) | variance (foot size)

5.855

54175

3.5033"10-02 176.25 1.22892%10+02 1.25 9.1667*10-01

9. 7225M0-02 132.5 5.5833%10+02 7.5 1.ab&7

https://en.wikipedia.org/wiki/Naive_Bayes_classifier



Person | mean (height) | variance (height) | mean (weight) | variance (weight)

male

female

Gaussian Naive Bayes

5.855
52,4175

1 (z; — py,)?

3.5033"10-02
9.7225"10-02

Person | height (feet) | weight (Ibs) | foot size(inches)

sample | 6

130

8

2
\/ QWJ% QUYC

mean (foot size) | variance (foot size)

176.25 1.2292%10+02 1.25 9.1667*10-01
1325 5.5833%10+02 1.5 1.66&7

. P(male) p(height | male) p(weight | male) p(foot size | male)
posterior (male) = — 7
evidence

) P(female) p(height | female) p(weight | female) p(foot size | female)
posterior (female) = =
evidence

https://en.wikipedia.org/wiki/Naive_Bayes_classifier



Gaussian Naive Bayes

1 (z; — py,)?

2
QO'YC

Person | mean (height) | variance (height) | mean (weight) | variance (weight) | mean (foot size) | variance (foot size)

male 5.855 3.5033"10-02

female | 5.4175 9.7225"10-02

Person | height (feet) | weight (Ibs) | foot size(inches)
sample | 6 130 8

176.25 1.2292%10+02 1.25 9.1667*10-01

1325 5.5833%10+02 1.5 1.66&7

P(male) = 0.5

. (6 — p)? i
p(height | male) = =~ 1.5789,

1
ex
v 2o’ g ( 20

https://en.wikipedia.org/wiki/Naive_Bayes_classifier



Gaussian Naive Bayes

1 P — 1y )
(mz | Y (.CU ,;LYC) |
\/27T0'Y 2UYC

Person | mean (height) | variance (height) | mean (weight) | variance (weight) | mean (foot size) | variance (foot size)

male 5.855 3.5033"10-02 176.25 1.2292%10+02 1.25 9.1667*10-01

female | 5.4175 9.7225"10-02 1325 5.5833%10+02 1.5 1.66&7

p(weight | male) = 5.9881 .10 °
Person  height (feet) | weight (lbs) foot size(inches) p(foot size | male) = 1.3112-107°
posterior numerator (male) = their product = 6.1984 - 10?
P(female) = 0.5
p(height | female) = 2.2346 - 10~
p(weight | female) = 1.6789 - 10~*
p(foot size | female) = 2.8669 - 10~

posterior numerator (female) = their product = 5.3778 - 10~

sample | 6 130 8

https://en.wikipedia.org/wiki/Naive_Bayes_classifier



Gaussian Naive Bayes

1 P — 1y )
(mz | Y (.CU ,;LYC) |
\/27T0'Y 2UYC

Person | mean (height) | variance (height) | mean (weight) | variance (weight) | mean (foot size) | variance (foot size)

male 5.855 3.5033"10-02 176.25 1.2292%10+02 1.25 9.1667*10-01

female | 5.4175 9.7225"10-02 1325 5.5833%10+02 1.5 1.66&7

p(weight | male) = 5.9881 .10 °
Person  height (feet) | weight (lbs) foot size(inches) p(foot size | male) = 1.3112-107°
posterior numerator (male) = their product = 6.1984 - 10?
P(female) = 0.5
p(height | female) = 2.2346 - 10~
p(weight | female) = 1.6789 - 10~*
p(foot size | female) = 2.8669 - 10~

posterior numerator (female) = their product = 5.3778 - 10~

sample | 6 130 8

https://en.wikipedia.org/wiki/Naive_Bayes_classifier
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CountVectorizer in Scikit-learn

- 2MO|X Bag of Words VectorE &O0IF+= class

class sklearn,feature_extraction.text. Count¥ectorizer (input="content, encoding="utf-8', decode error="strict’
strip_accents=None, lowercase=True, preprocessor=None, fokenizer=None, stop words=None, token pattern={?
u)\b\wlwtlb’, ngram_range=(1, 1), analyzer="word’, max_df=1.0, min_df=1, max_features=None, vocabulary=None,

binary=False, dfype=<class numpy.intf4'>) g [source

http://scikit-
learn.org/stable/modules/generated/sklearn.feature_extr
action.text.CountVectorizer.html



CountVectorizer in Scikit-learn

CHE EXE 28 XE 48 > HE2 18 = A3

¥ example = ["Sports", "Mot sports', "Sports","Sports", "Not sports"]

text example = ["A great game", "The election was over', "Very clean match",
A& clean but forgettable game” "It was a close election”, |
countvect example = CountVectorizer()

% _example = countvect example.fit _transform{text example)
countvect example.get feature names() |5

['but', 'clean', 'close', 'election', 'forgettable', 'game', 'great', 'it']



CountVectorizer in Scikit-learn

CHE EXE 28 XE 48 > HE2 18 = A3

¥ _example . toarray( )

array([[0, O, 0O, 0O,

[0
[
[0,
[
[

o—

0, 0, 1
1, 0, 0,
1, 0, 0,
0, 1,1

ST sE
Shoe
S22
TR 2S
S22
SR 2
SN2
e

], dtype=intb4)

W examp | e



NB classifier family in scikit-learn

Scikit-learn0j| A] X|Z5t= NB classifier
Bernoulli Naive Bayes
Multinomial Naive Bayes

Gaussian Naive Bayes



Read more in the User Guide.
Parameters: alpha : float, optional (default=1.0)

Additive (Laplace/Lidstone) smoothing parameter (0 for no smoothing).
binarize : float or None, optional {default=0.0)

Threshold for binarizing (mapping to booleans) of sample featuras. If None, input is
presumed to already consist of binary vectors.

fit_prior : boolean, optional (default=True)
Whether to learn class prior probabilities or not. If false, a uniform prior will be used.
class _prior : array-like, size=[n_classes,], optional (default=None)

Prior probabilities of the classes. If specified the priors are not adjusted according to the
data.

Attributes: class _log prior_: array, shape = [n_classes]
Log probability of each class (smoothed).
feature log prob_: array, shape = [n_classes, n_features]
Empirical log probability of features given a class, Pix_ily).
class_count_: array, shape = [n_classes]

Number of samples encountered for each class during fitting. This value is weighted by
the sample weight when provided.

feature_count_ : array, shape = [n_classes, n_features]

Number of samples encountered for each (class, feature) during fitting. This value is
weighted by the sample weight when provided.



Bernoulli Naive Bayes

from sklearn. naive baves import Bernoul | INB

clf = Bernoul | iNB(binarize=0)
clf fit{¥ example, v_example)
clf.class log prior_

array( [-0.91629073, -0.51082562])

clf.class _count_ clt.feature_log prob_

array([ 2., 3.1) array( [[-1.38629436, 88629436, —-0.693147158, -0.28768207, —1. 538629456,
-1 38629456, 836629436, —-0.69314715, —-1.38629436, -0 69314715,
-0, 69314718, J3BB29436, -0.28768207] |

—0. 22314355, 1629073, 60343791, -0.91623073, —1.60943731,

-1

-1

-1

[-0.91629073, -0.51082562, -1.60943791, —-1.60943791, -0.91629073,
0.4 -1

-1.60943791, -0.91629073, -1.609437911]1)

clf.feature_count_

array([[ O, O, 1., 2., 0., 0., O, 1., 0, 1., 1., 0., 2.7,
(1., 2., o, o, 1., 53, 1., 0., 1., 0., 0, 1., 0.



Parameters:

Attributes:

alpha : float, optional {default=1.0)

Additive (Laplace/Lidstone) smoothing parameter (0 for no smoothing).
fit_prior : boolean, optional {default=True)

Whether to learn class prior probabilities or not. If false, a uniform prior will be used.
class_prior : array-like, size (n_classes,), optional {default=Nong)

Prior probabilitizs of the classes. If specified the priors are not adjusted according to the
data.

class log_prior_ : array, shape (n_classes, }

Smoothed empirical log probakility for each class.
intercept_ : property

Mirrors class_log_prior_ for interpreting MultinomialNEB as a linear model.
feature log_prob_: amray, shape (n_classes, n_featuras)

Empirical log probability of features given a class, Pix_i|v).
coef : property

Mirrors feature_log_prob_ for interpreting MultinomialNE as a linear model.
class _count_: amray, shape (n_classes))

Mumber of samples encountered for each class during fitting. This value is weighted by
the sample weight when provided.

feature_count_ : array, shape (n_classes, n_features)

Mumber of samples encountared for each (class, feature) during fitting. This value is
weighted by the sample weight when provided.



from sklearn. naive_baves import MultinomiallNB

clf = MultinomialNB()
clf fit(¥ example, v_example)

printiclf.class_log_prior_)
print{clf.feature_log_prob_)
print{clf.class_count_)
printiclf.feature_count_)

print{clf.coef_)
print{clf.intercept_)

[-0.91629073 -0.51082562]

[[-3.09104245 -3.09104245 -2.39769527 —1.99243016 -3.09104245 -3.09104245

—3.09104245 -2.39789527 -5.09104245 -2.39739527 —-1.99243016 —3.09104245
—1.99243016]
[-2.52572864 -2 12026354 -3 21887582 -3.21887582 —2.52572864 —1.42711636
—2.52572664 -3.21867562 -2.52572064 -3.21887562 -3.21887582 —2.52572664
-3.21887582]]

[2. 3]

(to. o 1.2 0 0 0 1. 0 1. 2 0. 2]

1.2, 0 0 1. &5 1.0 1. 0 0 1. 01]

[[-2.52572864 —2. 12026354 -3.21887582 —3.218687582 -2.52572864 —-1.42711636
—2. 52572664 -3.21867562 -2.525726064 -3.21687562 -3.21887582 —2.52572664
-3.21887582]]

[-0.51082562]



Gaussian Naive Bayes

Read more in the User Guide.
Parameters: priors - array-like, shape (n_classes )

Prior probabilities of the classes. If specified the priors are not adjusted according to the
data.

Attributes: class _prior_: array, shape (n_classes))
probability of each class.
class_count_: array, shape (n_classes,)
number of training samples observed in each class.
theta : array, shape (n_classes, n_features)
mean of each feature per class
sigma_ : array, shape (n_classes, n_features)

variance of each feature per class



from sklearn.naive_baves import GaussianNB

clf = GaussianNB()
clf . fit{xX example. toarray(), v_example)

GaussianNB(priors=None]

print{clf.class_count_)
printiclf.class_prior_)
print{clf.theta_)
printlclf.sigma_)

[ 2. 3.]

[ 0.4 0.6]

[[ 0. 0, 0.5 1 0. 0.

0.5 0. 0.5 1. 0. 1.

[ 0.33333333 0.66666667 0. 0, 0.33333333 1.bbbbbbbT
0.33333333 0O 0.33333333 0O 0 0.33333333
0. 1]

[[ 6.00000000e-10 5. 00000000e-10  2.50000001e-01  §,00000000e—10
g.00000000e-10  §8.00000000e—-10  8.00000000e-10 2. 50000001e-01
0.00000000e-10  2.50000001e-01  1.00000000e+00 &, 00000000e-10
6. 00000000e—10]

[ 2.22222223e—01  2.22222223e-01  §.00000000e-10 6. 00000000e-10
2.22222223e-01 2.22222223e-01 2 .22222223e-01  6.00000000e-10
2.22222223e-01  8.00000000e—-10  8.00000000e-10 2. 22222223e-01
8. 00000000e-10] ]
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20newsgroups Dataset

[ &£ X Q1 Text =& Toy dataset

207l12] w4 HIAE [|O|EHE 2&Fol2h

Multiclass classification?| CHEX 2|
b~

ok 20.000782] news document =X

http://gwone.com/~jason/20Newsgroups/



20newsgroups Dataset

comp.graphics
comp.os.ms-windows.misc
comp.sys.ibm.pc.hardware
comp.sys.mac.hardware
comp.windows.X

rec.autos scl.crypt
rec.motorcycles sci.electronics
rec.sport.baseball |[sci.med
rec.sport.hockey SCi.space

talk.politics.misc talk.religion.misc
misc.forsale talk.politics.guns alt.atheism
talk.politics.mideast||soc.religion.christian

http://gqwone.com/~jason/20Newsgroups/



Process for text classification

H|O|E| =H]

o L - H|O|E| cleansing  Hyper parameter - Set metric - Choose best model
- HIOIE Tagging - Tokenization - Ngrams - Train/Test Split
- Stopword H|A - Threadshold - Hyper parameter
- Stemming
Vector

- Bag of words
- TF-IDF



Text .These are not the droids you are looking for.*

‘ Tokenizer ‘

|1hase | are | not ~ the | ‘droids | | you | are :Innking for

‘ Stop Word Filtenng

droids looking

| Stemming

Index Keys | droid look

https://blog.codecentric.de/en/2013/01/text-search-mongodb-stemming/



Process for text classification

H|O|E| =H]

o L - H|O|E| cleansing  Hyper parameter - Set metric - Choose best model
- HIOIE Tagging - Tokenization - Ngrams - Train/Test Split
- Stopword H|A - Threadshold - Hyper parameter
- Stemming
Vector

- Bag of words
- TF-IDF



Concepts of ngrams

otHo] R 7H=0] THoE |[= AU

[ -
’////t_ﬁi;ﬁq

N = 1 :[Thisl|is|allsentence| unigrams: 5
“—‘———_____\_s_qr_"utence
— T ﬂis,
N = 2 :[This|is|a|sentence] vigrams: isa.
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https://medium.com/algorithms-data-structures/ngrams-nedir-74c30162c6da



Process for text classification
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TF-IDF
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Process for text classification

H|O|E| =H]

o L - H|O|E| cleansing  Hyper parameter - Set metric - Choose best model
- HIOIE Tagging - Tokenization - Ngrams - Train/Test Split
- Stopword H|A - Threadshold - Hyper parameter
- Stemming
Vector

- Bag of words
- TF-IDF



Data loading

o St

- Scikit-learn {5 RS2 =272

from sklearn.datasets import fetch 20newsgroups
news = fetch 20newsgroups(subset="'all')

news.keys()

dict keys(['data', 'filenames', 'target names', 'target', 'DESCR', 'description'])



Data loading

print (news.data[0])

From: Mamatha Devineni Ratnam <mr47+@andrew.cmu.edu>
Subject: Pens fans reactions

Organization: Post Office, Carnegie Mellon, Pittsburgh, PA
Lines: 12

NNTP-Posting-Host: po4.andrew.cmu.edu

I am sure some bashers of Pens fans are pretty confused about the lack

of any kind of posts about the recent Pens massacre of the Devils. Actually,

I am bit puzzled too and a bit relieved. However, I am going to put an end

to non-PIttsburghers' relief with a bit of praise for the Pens. Man, they

are killing those Devils worse than I thought. Jagr just showed you why

he is much better than his regular season stats. He is also a lot

fo fun to watch in the playoffs. Bowman should let JAgr have a lot of

fun in the next couple of games since the Pens are going to beat the pulp out of Jersey anyway. I
ed not to see the Islanders lose the final

regular season game. PENS RULE!!!



Data loading

news. target 0 news .target_names

[ 'alt.atheism’',
'comp.graphics',
'comp.os.ms-windows.misc',
'comp.sys.ibm.pc.hardware',
'comp.sys.mac.hardware',

10

| am sure some bashers of Pens fans are pretty

confused about the lack of any kind of posts about the ' comp . windows.x ',
recent Pens massacre of the Devils. Actually, | am bit 'misc.forsale’,
puzzled too and a bit relieved. However, | am going to 'rec.autos',

put an end to non-Plttsburghers' relief with a bit of 'rec.motorcycles’,
praise for the Pens. Man, they are killing those Deuvils ‘rec.sport.baseball’,
worse than | thought. Jagr just showed you why he is ‘rec.sport.hockey’,

'sci.crypt',
'sci.electronics',
'sci.med',
'sci.space',

much better than his regular season stats. He is also a
lot fo fun to watch in the playoffs. Bowman should let
JAgr have a lot of fun in the next couple of games since

the Pens are going to beat the pulp out of Jersey 'soc.religion.christian’,
anyway. | was very disappointed not to see the Islanders  'talk.politics.guns',
lose the final regular season game. PENS RULE!!! 'talk.politics.mideast',

'talk.politics.misc’',
'talk.religion.misc']



Process for text classification

H|O|E| =H]

o L - H|O|E| cleansing  Hyper parameter - Set metric - Choose best model
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Data cleansing
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Data cleansing

def data cleansing(df):
delete_email = re.sub(r'\b[\w\+]+@[\w]+.[\w]+.[\w]+.[\w]+\b', ' ', df)
delete number = re.sub(r'\b|\d+|\b', ' ',delete email)
delete non word = re.sub(r'\b[\W]+\b', ' ', delete_ number)

cleaning result = '.join(delete non word.split())
return cleaning result

news df.loc[:, 'News'] = news df[ 'News'].apply(data cleansing)
news_df.head()

News Target

0 From Mamatha Devineni Ratnam Subject Pens fans... rec.sport.hockey
1 From Matthew B Lawson Subject Which high perfo... comp.sys.ibm.pc.hardware
2 From hilmi Hilmi Eren Subject Re ARMENIA SAYS ... talk.politics.mideast
3 From Guy Dawson Subject Re IDE vs SCSI DMA and... comp.sys.ibm.pc.hardware
4

From Alexander Samuel McDiarmid Subject driver... comp.sys.mac.hardware



Process for text classification

H|O|E| =H]

o L - H|O|E| cleansing  Hyper parameter - Set metric - Choose best model
- HIOIE Tagging - Tokenization - Ngrams - Train/Test Split
- Stopword H|A - Threadshold - Hyper parameter
- Stemming
Vector

- Bag of words
- TF-IDF



sklearn.feature extraction.text

Scikit-learn text vector2} B &=
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CounterVectorizer

class sklearn.feature extraction.text. CountVectorizer (input="content’, encoding="utf-8,
decode_error="strict’, strip_accents=None, lowercase=True, preprocessor=None, tokenizer=None, stop_words=None,
token_pattern="(?u)\b\w\w+\b’, ngram_range=(1, 1), analyzer="word’, max_df=1.0, min_df=1, max_features=None,
vocabulary=None, binary=False, dtype=<class ‘numpy.int64’>) q [source]

encoding : string, ‘utf-8’ by default.

decode_error : {'strict’, ‘ignore’, ‘replace’}

analyzer : string, {'word’, ‘char’, ‘char_wb'} or callable
preprocessor : callable or None (default)

tokenizer : callable or None (default)

ngram_range : tuple (min_n, max_n)

stop_words : string {'english’}, list, or None (default)
lowercase : boolean, True by default

max_df : float in range [0.0, 1.0] or int, default=1.0
min_df : float in range [0.0, 1.0] or int, default=1
binary : boolean, default=False



TfidfVectorizer

class sklearn.feature extraction.text. TfidfVectorizer (input="content’, encoding="utf-8’
decode_error="strict’, strip_accents=None, lowercase=True, preprocessor=None, tokenizer=None, analyzer="word’,
stop_words=None, token_pattern="(?u)\b\w\w+\b’, ngram_range=(1, 1), max_df=1.0, min_df=1, max_features=None,
vocabulary=None, binary=False, dtype=<class ‘numpy.int64’>, norm="12°, use_idf=True, smooth_idf=True,
sublinear_tf=False) { [source]

norm : ‘|1’ '[2" or None, optional
use idf : boolean, default=True
smooth_idf : boolean, default=True
sublinear _tf : boolean, default=False






Stemmer H&5}7]

from nltk import stem

stmmer = stem.SnowballStemmer("english")

sentence = 'this is a foo bar sentences and i want to ngramize it'
[stmmer.stem(word) for word in sentence.split()]

[ 'this',
'is',

ra‘,
'foo',
'bar’',
'sentenc’,
'and',
riI,
'want',
'to',
‘ngramiz’,
it ]

stmmer.stem("images"”"), stmmer.stem("imaging"), stmmer.stem("imagination")

('imag’', 'imag', 'imagin')



StemmedCountVectroizer

from sklearn.feature_ extraction.text import CountVectorizer, TfidfVectorizer

enlish stemmer = nltk.stem.SnowballStemmer("english")
class StemmedCountVectorizer(CountVectorizer):
def build analyzer(self):
analyzer = super (StemmedCountVectorizer,self).build analyzer()
return lambda doc: (enlish stemmer.stem(w) for w in analyzer(doc))

StemmedCountVectorizer (min df=1, stop words="english").fit([sentence]).vocabulary

{'bar': 0, '"foo': 1, 'ngramiz': 2, 'sentenc': 3, 'want': 4}

CountVectorizer(min df=1, stop words="english").fit([sentence]).vocabulary

{'bar': 0, 'foo': 1, 'ngramize': 2, 'sentences': 3, 'want': 4}



StemmedTfidfVectroizer

from sklearn.feature extraction.text import TfidfVectorizer

enlish stemmer = nltk.stem.SnowballStemmer("english")
class StemmedTfidfVectorizer(TfidfVectorizer):
def build analyzer(self):
analyzer = super(StemmedTfidfVectorizer,self).build analyzer()
return lambda doc: (enlish stemmer.stem(w) for w in analyzer(doc))
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Scikit-learn Pipeline 2=
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In [9]: from sklearn.datasets import fetch_ 20newsgroups
from sklearn.feature extraction.text import TfidfVectorizer
from sklearn.pipeline import Pipeline
from sklearn.naive bayes import MultinomialNB
newsgroups_train = fetch 20newsgroups(subset='train')

# For the sake of simplicity of the api we will convert indices of the categories to the actual labels
X

= newsgroups train.data
y = [newsgroups train.target names[i] for i in newsgroups_ train.target]

In [10]: pipeline = Pipeline([('vectorizer', TfidfVectorizer()), ('clf', MultinomialNB(0.01))])

classifier = pipeline.fit(X, y)

In [13]: text example = [ 'Angela Merkel just walked into her fourth term as chancellor of Germany. Her party, the
predictions = classifier.predict(text example)
predictions

Out[13]: array(['talk.politics.misc'],
dtype='<U024")

In [14]: from sklearn.externals import joblib
joblib.dump(classifier, 'model.pkl')
Out[1l4]: [ 'model.pkl']

https://medium.com/@elvin.valiev/5-minutes-from-
machine-learning-to-rest-api-e8c6e508a370



Pipeline

pipeline = Pipeline([('vectorizer', TfidfVectorizer()), ('clf', MultinomialNB(0.01))])
classifier = pipeline.fit(X, y)

def fit(self, X, v):
X transformed = X
for name, estimator in self.steps[:-1]:
# lterate over all but the final step
# fit and transform the data
X transformed = estimator.fit transform(X_ transformed, y)
# fit the last step
self.steps[-1][1].£fit(X_transformed, y)
return self

def predict(self, X):
X transformed = X
for step in self.steps[:-1]:
# lterate over all but the final step
# transform the data
X transformed = step[l].transform(X transformed)
# predict using the last step
return self.steps[-1][1l].predict(X transformed)

https://github.com/amueller/introduction_to_ml_with_python/blob/master/06-algorithm-chains-and-pipelines.ipynb



Pipeline

pipe = make pipeline(T1(), T2(), Classifier())

T1 T2 Classifier

pipe.fit(X, y)

Y\
x TL.fit(X, y) — y

T1.transform(X) x 1 T2 fit(X1, b T2 y \

T2tran5f0rm{)(1}l x2 Classifier.fit(X2, y}

Classifier

pipe.predict(X')

I T1.transform(X’ X 1 T2.transform(X'’ 1}'x 2CIaSS|ﬁer predict(X’ E}y [

https://github.com/amueller/introduction_to_ml_with_python/blob/master/06-algorithm-chains-and-pipelines.ipynb
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Gridsearch

## GridSearchCV to come with best paramaters

from sklearn.grid search import GridSearchCV

¥ = job list[['is dataScience', 'is ml', 'is python','is stat', 'is es', 'is wisual']]
¥y = job list['class']

logreg = LogisticRegression()

¢ vals = [0.0001, 0.001, 0.01, 0.1, 0.5, 0.75, 1.0, 2.5, 5.0, 10.0, 100.0, 1000.0)
penalties = ['11','12"]

gs = GridSearchCV(logreg, {'penalty':penalties, 'C':C vals}, wverbose=True, cv=5, scoring='accuracy')
gs.fit(X, ¥)

https://shettydatascience.wordpress.com/2016/10/31/collecting-data-by-scraping-a-website-and-building-
a-binary-predictor-with-logistic-regression/



Pipeline + Gridsearch

from sklearn.pipeline import Pipeline

from sklearn.linear model import LogisticRegression

from sklearn.feature extraction.text impert TfidfVectorizer
from sklearn.model selection impert GridSearchCV

tfidf = TfidfVectorizer(strip_accents=None, lowercase=False, preprocessor=None})

param_grid = [{'vect ngram range': [{1, 1}], Vect_attributename

'vect stop words': [stop, Mone],
‘'vect_ tokenizer': [tokenizer, tokenizer_porter],
'clf penalty': ['11', "12'].
‘clf C': [1.8, 18.8, 1l68.8]}.
{'vect ngram range': [{1. 1})].
'vect stop words': [stop. Nome],
‘vect tokenizer': [tokenizer, tokenizer porter],
'vect wuse idf':[False],.
'vect morm':[None],
‘'clf pemalty': ["11', "12'].
‘clf C': [1.6, 18.6, lea.a]}.
]

Lr_tfidf = Pipeline([('vect', tfidf),
('clf', LogisticRegression{random state=0))])

gs_lr_tfidf = GridSearchCV({lr_tfidf, param_grid, scorimg='accuracy’',
cv=5, wverbose=1l, n_jobs=-1)

gs Lr_tfidf.fit(X _train, y train)

Fitting 5 folds for each of 48 candidates, totalling 240 fits



Vectorizer

- Tfidf
- Count
- StemmedTfidf

- StemmedCount

Modeling Plan

- LogisticRegression
- Bernoulli NB
- Multinomial

- Gaussian NB

- CV 5 times

- Accuracy

- Recall
- Precision
- F1
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Human knowledge belongs to the world.
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