Time Series

Data handling

Director of TEAMLAB
Sungchul Choi

Time Series Data

26,000 —

24,000 -

22,000

20,000

18.000 —

16,000 —

I 1 | 1 I I | |
0 100 200 300 400 500 600 700

271 2X|= thW5E=2] | 0|El= Al A|E G 0] B
Az 21 7150] 223!

Time series In Pandas

- AlZHol| £ Groupby 71S50]| 228t

O: GIO|E{E == SHoH EQst
- Time lag === Moving Average= H{EA| A|AH?

PandasOil= 0|01 Sal=l 7|s= MlSgt

DateTimelndex

Python2| Datetime &=

- I{oPM= =Wt H|0|E] X2 = flsl datetime ZES =&

datetime datetime
date_str =

date_object = datetime.strptime(date_str,

(type(date_object))
(date_object)

Python2| Datetime &=

date object.day

19

date object.month

9

date object.weekday()

2

DateTime Index 2= 7|

[HEE29|HI0|El=stre 2 E|H Y=
> S= S DateTimeindex= H=10| ZQ St

| = pd.to_datetime(df|

DateTime Index 2= 7|

gwangju_eco.txt
IS SE35H A Datetime QIEIAE OIS EM|2!

S2|AFgH - 1) CP949 Encoding 2) Crosstab
3) separation 4) Transpose

0 1

NS NEY ZEZolA| Hint 3 =
2016. 01 ZRESOI7 (M) 746.1

|.str.split(, expand=True)
2016. 01.1 F X} (HE) 722.3
2016. 01.2 AR} (K T) 23.8 COI’]C&]’E—?— Merge
2016. 01.3 AAZE (%) 3.2
2016.01.4 1EE (%) 67.5 date index= timeindex=

2016. 02 ZFHESIF (HY) 752.7
2016. 02.1 F AR} (M) 722.4 Type tHA - str - value
2016. 02.2 A} (M) 30.3
2016. 02.3 ARIE (%) 4
2016. 02.4 IEE (%) 57.5

2016.03 ZHESQIT (M) 738.8

category ZHESIF (MY) 1EBE (%)

HAUE (%)

SR (HY) FYUX (DY)

date
2016-01-01 746.1 57.5 3.2 23.8 722.3
2016-02-01 752.7 57.5 4.0 30.3 722.4
2016-03-01 738.8 57.2 2.8 20.7 718.2
2016-04-01 748.1 57.8 2.9 215 726.6
2016-05-01 758.1 58.7 2.7 20.4 737.7
2016-06-01 763.4 58.8 3.1 23.6 739.8
2016-07-01 760.1 58.7 2.8 21.6 738.5
2016-08-01 758.9 58.3 3.4 25.6 733.4
2016-09-01 755.8 57.9 3.6 26.9 728.9
2016-10-01 755.3 58.2 3.0 22.7 732.6
2016-11-01 747.7 57.9 2.6 19.6 728.1
2016-12-01 752.6 58.1 2.8 21.3 731.3
2017-01-01 7471 58.2 1.9 13.9 733.2
2017-02-01 756.0 58.0 3.4 25.6 730.4
2017-03-01 757.8 58.6 2.7 20.2 737.6
2017-04-01 769.0 58.8 3.7 28.3 740.7
2017-05-01 772.6 59.2 3.4 26.4 746.2

Kaggle Challenge

Data analysis
Competition

Google is acquiring data science community Kaggle

Frederic Lardinois (@fredericl), Matthew Lynley (emattlynley), John Mannes (@JohnMannes

[o]n]s T

fwlﬂltzilil

F

Google

Crunchbase

Kaggle

2010

AdChoices

Bike Demand

DMXMOIA|AIE LIO|E 2X| - AlZ=tet [X 2|0 20[2t

Bike Sharing Demand
‘ M‘ , Forecast use of a city bikeshare system

3,201 teams - 4 years ago

Owverview Data Notebooks Discussion Leaderboard Rules Team My Submissions Late Submission

Data 22{ 27|

df = pd.read_csv(

os.path.join(DATA_DIR,),
parse_dates = |)
df .set_index(. inplace=)
df .head()

Resampling

Time resampling
- M Z 5Ol K2t A2 7| £2 2 0|5 & Aggregation

- Groupby?} FAF > M ZHEESH D CHSt 7|5 WIS

datetime

season holiday workingday weather temp

atemp humidity windspeed casual

registered count

2011-01-01 00:00:00

2011-01-01 01:00:00

2011-01-01 02:00:00

2011-01-01 03:00:00

2011-01-01 04:00:00

1 0 0 1 984
1 0 0 1 9.02
1 0 0 1 9.02
1 0 0 1 9.84
1 0 0 1 984

14.395

13.635

13.635

14.395

14.395

81

80

80

75

75

0.0

0.0

0.0

0.0

0.0

o W o

13

32

27

10

16

40

32

13

GroupBy

df.index.month
df .index.year

df .groupby/(

| , B | .sum() .reset_index()

Resampling

resample
resample
resample

resample

Resampling

Frequnecy 7| =S &

2O MS

https.//pandas.pydata.org/pandas-
docs/stable/user guide/timeseries.html

L
h

Description

business day frequency

custom business day frequency (experimental)
calendar day frequency

weekly frequency

month end frequency

business month end frequency
custom business month end frequency
month start frequency

business month start frequency
custom business month start frequency
quarter end frequency

business quarter endfrequency
quarter start frequency

business quarter start frequency

year end frequency

business year end frequency

year start frequency

business year start frequency

hourly frequency

minutely frequency

secondly frequency

milliseonds

microseconds

nanoseconds

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html

Resampling - Filter

- something_range gt 2 7|2H2 M350 Filter X| &

period = pd.date_range(
start= , end=

df| | .resample() .sum()| period]

pandas.date range

pandas .date_range(starf=Ncrne, end=None, periods=None, freq=None, tz=None, normalize=False, name=None,
closed=None, **kwargs) [source]

Return a fixed frequency Datetimelndex.

start : sir or datetime-like, optional
Left bound for generating dates.

end : str or datetime-like, optional
Right bound for generating dates.

periods : integer, optional
Number of periods to generate.

freq : str or DateOffset, default ‘D’
Frequency strings can have multiples, e.g. ‘'SH'. See here for a list of frequency
aliases.

>>> pd.date range(start='1/1/2018', end='1/08/2018")
DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04',
'2018-01-05"', '2018-01-06', '2018-01-07', '2018-01-08'],
dtype='datetime64[ns]', freqg='D")

Specify start and periods, the number of periods (days).

>>> pd.date range(start='1/1/2018', periods=8)
DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04",
‘2018-01-05"', '2018-01-06', '2018-01-07', '2018-01-08'"],

dtype="'datetimeéd4[ns]’', fregq='D")

Specify end and periods, the number of periods (days).

>>> pd.date range(end='1/1/2018"', periods=8)
DatetimeIndex(['2017-12-25', '2017-12-26', '2017-12-27', '2017-12-28",
'2017-12-29', '2017-12-30', '2017-12-31', '2018-01-01'],
dtype='datetime64[ns]', freqg='D")

See also:

DatetimeIndex

An immutable container for datetimes.
timedelta_range

Return a fixed frequency Timedeltalndex.
period range

Return a fixed frequency Periodindex.
interval range

Return a fixed frequency Intervallndex.

Resampling - chart

df["count"”"].resample('D').sum().plot()

<matplotlib.axes. subplots.AxesSubplot at 0x130lcfeb8>

8000 -
6000 -
M’h\
2000 -
0 .vUHL'J. Jq

Jan Apr Jul Oct Jan Apr Jul Oct
2011 2012
datetime

197.5 A
195.0 1

1925 - df| | = df.index.dayofweek

190.0 1

- df .groupby() | | -.mean()

185.0 1

182.5 kind:

180.0
0

Time shifting

Time shifting

- AlZte] XH(Time Lag) 24 L

6ll) 300 HISH F7t= SSMUII?

- PandasLll Time shifting 7|2 =

time window= 7|92 7|7t9] X}0|E BEMII=

Time shifting

monthly_mean = df] | .resample('M").mean()
monthly_mean_shift = monthly_mean.shift(

periods=2, fill_value=0)
df_monthly = pd.DataFrame(

monthly_mean, columns=| 1)
df_monthly]|] \
= monthly_mean_shift

df _monthly

Moving average

Moving average
- Al A€ 0| = 0|2 B
> 20|25 S0|HA FME 7| st 0|SHZH

Amazon's Quarterly Revenue (in '000,000s)
BY QUARTER = ALL TIME » UPDATED 5:50 PM

% 50.00 k ;
. Revenue
540,00k /\1‘ ,) l_l e
/\// & . Seasonal index
$ 30.00 k /\‘ , §
kl/ o
% 20,00k ‘{\ =
o
AN :
$10.00 k A | :
T
P
—
$ 0.00 ,
oy gton Jlug Mar Ooe 11 At 1, K A MNay, M g A A Opy .
" o .Gp"'S' 1335-?_. -.:ISCF Dgu'y J%1¢ _f Fp o .-' B0 - i,-— ;3'1'*# 3:’ @-f 75 _J-.”- ;.’.5'{! s

Moving average

monthly_mean = df| | .resample(
).mean().fillna(9)
monthly_mean_shift = monthly_mean.rolling(
window=360,).mean()
df_monthly = pd.DataFrame(
monthly_mean, columns=|])

df_monthly| | = monthly_mean_shift

df _monthly.plot(figsize=(26,10))

Moving average

- I's
— i |
= 1\\ |
_ L ;
L
— 2
|
el 5
_ | _
— - Nf
. o)
—_— f_w _
— tf/

e —
—

ﬁ |8

———

= 7 i
— ,m_ |
= _
W/_]

P | [®
==
MJ

2 g 2 g
[1al m (] (]

=1 = = = =8

4 =

Cumsum
- A AIE 4|0|E{E window O}C} =

- rolling(window=10).sum() 2} CI&

monthly_mean = df]| | .resample(

cumsum = monthly_mean.cumsum()

Secondary axis

ax = df_monthly.plot(y= , use_index=Irue)
df_monthly.plot(

y= ,secondary_y=Irue,
ax=ax, use_index=True, figsize=(20,10))

Secondary axis

300 1 — COLUNE
cumsum [right}
- 4000
250 -
- 3000
200 -
- 2000
150 -
- 1000
100 -
50 o
an Apr Jul Oct Jan Apr Jul Oct
011 3012

datetime

TEAML/AB

Human knowledge belongs to the world.

